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Abstract

Forecasting future world events is a challenging but valuable task. Forecasts of
climate, geopolitical conflict, pandemics and economic indicators help shape policy
and decision making. In these domains, the judgment of expert humans contributes
to the best forecasts. Given advances in language modeling, can these forecasts be
automated? To this end, we introduce Autocast, a dataset containing thousands of
forecasting questions and an accompanying news corpus. Questions are taken from
forecasting tournaments, ensuring high quality, real-world importance, and diver-
sity. The news corpus is organized by date, allowing us to precisely simulate the con-
ditions under which humans made past forecasts (avoiding leakage from the future).
Motivated by the difficulty of forecasting numbers across orders of magnitude (e.g.
global cases of COVID-19 in 2022), we also curate IntervalQA, a dataset of numer-
ical questions and metrics for calibration. We test language models on our forecast-
ing task and find that performance is far below a human expert baseline. However,
performance improves with increased model size and incorporation of relevant in-
formation from the news corpus. In sum, Autocast poses a novel challenge for large
language models and improved performance could bring large practical benefits.

1 Introduction

Forecasting plays a crucial role in the modern world. Climate forecasts shape the policies of
governments and companies (Gillingham et al., 2018). Economic forecasts influence investment
and employment (Christensen et al., 2018). In 2020, forecasts about the spread of COVID-19 led to
national lockdowns and border closures (Adam, 2020), slowing the spread of the virus. Consequently,
machine learning (ML) models that make accurate forecasts across a broad range of topics could
enable more informed decision making at scale and improve ML safety (Hendrycks et al., 2021c).

Two main approaches to forecasting are described in the forecasting literature: statistical and judgmen-
tal forecasting (Webby and O’Connor, 1996; Armstrong, 2001). In statistical forecasting, forecasts
are made by traditional statistical models for time-series prediction such as autoregression (Makri-
dakis et al., 2008) or by ML time-series models (Makridakis et al., 2020; Triebe et al., 2021). Humans
create and tune the models but do not tweak individual forecasts. This works well when there are
many past observations of the variable being forecast and minimal distribution shift. By contrast,
in judgmental forecasting human forecasters use their own judgment to determine forecasts. The
forecasters may use statistical models, but often integrate information from various sources including
news, accumulated knowledge, and a priori reasoning. This enables forecasting for questions where
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Figure 1: Example from the Autocast dataset, including the question, the resolution of the question,
and the timeseries of aggregate human expert forecasts (Crowd) from the start date to the time the
question resolves. We train a language model to generate forecasts at each timestep, using only news
articles available at that timestep (i.e. without allowing any leakage of information from the future).

past data is scarce or subject to distribution shift (Tetlock and Gardner, 2016). For brevity, we refer to
judgmental forecasting as “forecasting” in the rest of the paper.

Because it relies on scarce human expertise, forecasting is only used for a small number of questions.
This motivates using ML to automate forecasting, e.g. by automating human information retrieval
(finding news sources), reasoning (to decide if some evidence bears on a forecast), and quantitative
modeling. ML models may also have some advantages over human forecasters. Models can read
through text or data much faster than humans and can discern patterns in noisy high-dimensional
data that elude humans. When it comes to learning, humans cannot be trained on past data in manner
simulating actual forecasting (e.g. How likely was the Soviet Union’s collapse from the viewpoint of
19807) because they know the outcomes — but past data can be used for ML models.

As a step towards automating human forecasting, we introduce Autocast, a new dataset for measuring
ML models’ forecasting ability. Autocast includes thousands of forecasting questions collected
from human forecasting tournaments. The questions vary in the forecasting horizon from days to
decades, in the topic (including politics, economics and science), and in the answer format (e.g.
multiple-choice vs. predicting a number). The questions are pre-selected for public interest, and there
is a strong human baseline (the crowd aggregate of many competitive forecasters). The questions
in Autocast are about past events (e.g. the US 2020 election) and so ML models could answer them
simply by memorizing what happened. To test forecasting ability, we need to simulate the state of
information before the past events (“retrodiction’). To this end, we curate a corpus of news items
from Common Crawl (Nagel, 2016) that is organized by date. This means a model can be exposed
only to news from before the outcomes being forecast, allowing for a rigorous test of retrodiction.

We implement a number of baseline models on Autocast, and demonstrate how language models can
be trained on past forecasting questions by retrieving from our news corpus. We find that performance
improves with model size and that information retrieval helps. However, all baselines are substantially
worse than aggregate human forecasts. On forecasting binary outcomes, the best ML model achieves
65% accuracy vs. 92% for humans (and 50% for random). The same ML model (Raffel et al., 2020)
is close to the human ceiling when fine-tuned on other NLP benchmarks (e.g. SQuAD from Rajpurkar
et al. (2016)), which shows that Autocast is a challenging, real-world test for ML. Experiment code
and the dataset are available at github.com/andyzoujm/autocast.

Contributions.

1. We introduce Autocast, a dataset for forecasting that covers diverse topics (e.g. politics, economics,
society, science) and varying time horizons.
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Question Summary Category Answer Type Resolution

Will a Tesla car demonstrate fully

autonomous capability before the end of 2021? Science & Tech T/F No
What will be Putin’s approval rating value 3 .. .
months after the potential invasion of Ukraine? Politics Numerical 83
When will the US-Canada border reopen? Social Numerical Nov 8, 2021
How many vacancies will arise on the U.S. Supreme Economy MCQ A

Court in 2021? (A) 0 (B) 1 (C) 2 (D) 3 or more

Table 1: Examples from the Autocast dataset. For brevity, we do not depict the full question
specification, which often includes context, definitions, and detailed resolution criteria.

2. Part of our dataset is a large news corpus organized by date, allowing us to rigorously evaluate
model performance on historical forecasts.

3. We show that forecasting is challenging for current language models, with accuracy and calibration
far below a strong human baseline.

2 Related Work

Forecasting. A recent experiment _ _

(Kirk Bonde, 2022) tested GPT-3 in the Number of Questions by Publish Date
few-shot setting on true/false questions col- 2000 Unresolved

lected from Metaculus (one of the sources for BEE Resolved

Autocast). However, since questions were not
filtered by date, some answers would have ap-
peared in GPT-3’s training data. Similar to our
work, ForecastQA (Jin et al., 2021) is a dataset  7qq
of forecasting questions that covers a range of
topics. However, ForecastQA’s questions were
written by crowdworkers without forecasting 5001
experience. Consequently, the questions are
often nonsensical or ambiguous given the lack
of additional context, e.g. “To how many people 0 2016 2017 2018 2019 2020 2021 2022

will the Representative of an internet speak Figure 2: The number of questions in Autocast
f)?? [ .
to by September 201977 or “In July 2019, by publish date. Unresolved questions are about

events after 2022 (e.g. the 2024 US Election). They
are not included in the test set but can be used as
auxiliary training data. Note that the number of
questions is accelerating. Future questions will be
added to Autocast, improving it over time.

1500

will an article say there were no volunteers
in 20167”. We found that a high percentage
of ForecastQA questions suffer from these
issues. By contrast, our questions were written
by experienced forecasters and are always
unambiguous given the full question description.
Finally, ForecastQA’s human baseline was done
retrospectively (making it unrealistic) whereas our dataset contains expert human forecasts from real
forecasting questions.

Information Retrieval. Information retrieval is crucial for forecasting, as good forecasts depend
on up-to-date, specialized information drawn from multiple sources (Tetlock and Gardner, 2016).
Recent work has used information retrieval to improve question-answering in large language models
(Lewis et al., 2020; Nakano et al., 2021; Shuster et al., 2021) or to address time-sensitive questions
(Chen et al., 2021). This has been applied to tasks that are related to forecasting, such as fact checking
and truthful question-answering. In forecasting, it is useful to read and compare multiple news articles
daily, in order to build an accurate picture of the current state, and then to iterate this process. We
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Figure 3: Autocast contains questions about locations across the world. The questions in the dataset
mention over 500 cities, spanning six continents.

design an architecture for this purpose (albeit with limits on article length and time horizon), drawing
inspiration from Wang and McAllester (2020).

Calibration. Calibration is important in forecasting (Tetlock and Gardner, 2016). Even expert
forecasters will be highly uncertain about some outcomes of interest. Such forecasts will be more
useful in the form of calibrated probabilities than as point estimates. Thus forecasters are evaluated
with proper scoring rules, which incentivize calibration. There is an extensive literature on improving
the calibration of deep learning models (Guo et al., 2017; Nguyen and O’Connor, 2015; Lin et al.,
2022; Minderer et al., 2021; Kull et al., 2019b), mostly for classification with a fixed set of classes.
One part of Autocast requires models to forecast continuous quantities varying over multiple orders
of magnitude, which has not been explored in prior work.

Truthful question-answering. Current language models often generate falsehoods when answering
questions (Shuster et al., 2021; Lin et al., 2021), and they also achieve poor calibration when giving
probabilistic answers (Hendrycks et al., 2021a) to human knowledge questions. However, for
questions with a known ground truth answer, we expect models to improve as a result of scale,
fine-tuning, and information-retrieval from reliable sources (Bai et al., 2022; Nakano et al., 2021;
Hadfield-Menell et al., 2016; Turner et al., 2020; Wainwright and Eckersley, 2019). Yet humans also
want models to give calibrated and truthful answers to questions that are too difficult or costly for
us to answer ourselves (Irving et al., 2018; Evans et al., 2021; Leike et al., 2017; Hendrycks et al.,
2021d; Reddy et al., 2020; Nahian et al., 2021). Forecasting is useful for this purpose. Forecasting
questions are challenging but eventually become easy to evaluate. By contrast, it may be difficult for
humans to evaluate superior answers to open problems in fundamental philosophy or science.

3 The Autocast Dataset

Forecasting Questions. We collected all available forecasting questions from three public forecast-
ing tournaments (Metaculus, Good Judgment Open, and CSET Foretell), which resulted in 6,707
questions total. These questions tend to have broad public interest (e.g., national rather than local
elections) and clear resolution criteria. Most questions are not already covered well by specialized
forecasts (such as weather forecasts). The questions are either true/false, multiple-choice, or involve
forecasting a numerical quantity or date (see Table 1 for examples). In these forecasting tournaments,
participants begin forecasting a question on a given day (the “start date”) and update their forecasts
multiple times up until the “close date.” At some later time, the forecast is resolved and participants
are scored based on all their forecasts. (Note the resolution date is often just after the closing date but
not always. The resolution can also happen before the planned closing date: e.g. when forecasting
when an event will occur.) Thus the “crowd” forecast (which aggregates over participants) is a
time-series of forecasts from the start to close date.
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Figure 4: Illustration of our FiD Temporal model. Forecasts are made each day (from start date
to resolution) by GPT-2. The input to GPT-2 is the top-1 daily news article retrieved by BM25,
which is encoded by FiD Static (a TS model). In training, GPT-2’s target is the average of daily
crowd predictions (denoted ‘FF” for day ¢) and the resolved outcome. Like human forecasters, GPT-2
accumulates news information over time and updates its predictions.

Autocast includes the question, the start and close dates, the answer (if the question has resolved),
and the time-series of crowd forecasts (Figure 1). Half of the questions have not yet resolved and
correspond to ongoing tournaments. Some of these questions concern events decades in the future,
requiring reasoning over long time horizons. These questions can still be used as training data by
using the crowd forecast as the target (as a high-quality proxy for the ground truth). However, the test
set only includes resolved questions. Our dataset also includes metadata that is helpful for forecasting.
There is detailed background information about the question (including precise terms of resolution)
and also links to relevant information posted by tournament participants. We include more details in
the appendix.

Train and test split. It is standard in ML for the test set to be drawn from the same distribution as
the train set. However, randomly splitting our questions into train and test without considering the
date would not simulate the conditions of forecasting. For example, a test question (“Will Trump
win the 2020 election?”’) could come from an earlier date than a related training question (“Will
President Biden pass the stimulus?”’). Thus, we split our questions using a date cut-off of mid-2021,
which means that questions in the test set resolve from mid-2021 to mid-2022. Note that if a model is
pre-trained on data from after mid-2021, this will also not simulate forecasting faithfully. In both
train and test sets, we implement dataset balancing for the true/false questions. To flip a label, we
negate the question using OpenAl’s GPT-3-175B Edit model (Brown et al., 2020) and manually check
for correct negation.

Contemporaneous news as context for forecasts. When a human is making a forecast at time ¢,
they use past and present (< t) information sources but are not exposed to any information from the
future (> ¢). If they forecast again at ¢ + 1, they will have updated on new information that was
generated from ¢ to ¢ + 1. These conditions can be simulated for ML models by (a) pre-training on
text generated before time ¢, and (b) providing the model with new information generated between
t and ¢t + 1. To this end, we provide a corpus of news articles scraped from CommonCrawl news
(Nagel, 2016; Hamborg et al., 2017) that is organized by publish date. The articles were derived from
diverse sources between 2016 to mid-2022 and total more than 200GB of data.



Model Parameters T/F MCQ Numerical Score Average

Random - 50.0 22.1 34.5 18.8 18.8
0.2B 454 23.5 345 17.2

UnifiedQA 0.8B 48.2 23.5 345 18.6 19.5
2.8B 54.9 25.1 34.5 22.8
0.2B 61.3 24.0 20.5 324

TS5 0.8B 60.0 29.1 21.7 33.7 32.9
2.8B 60.0 26.8 21.9 32.5
0.2B 62.0 29.6 24.5 335

FiD Static 0.8B 64.1 324 21.8 374 372
2.8B 65.4 35.8 19.9 40.6
0.6B 62.0 335 23.9 35.8

FiD Temporal 1.5B 63.8 324 21.0 37.6 37.8
4.3B 62.9 36.9 19.5 40.1

Human Crowd - 92.4 81.0 8.5 82.5 82.5

Table 2: Model accuracy on the Autocast dataset for each question type: true/false (T/F), multiple-
choice question (MCQ), and numerical (Numerical). For Numerical, lower is better. For other metrics,
higher is better. The model FiD Static (based on T5) retrieves the top 10 news articles over the period,
while FiD Temporal (based on GPT-2 with T5 encoder) retrieves the top 1 article each day. Averaging
over all model sizes, we find that the FiD Temporal achieves the best average.

3.1 Dataset Analysis

Distribution of Questions. The questions in Autocast cover a very wide variety of topics. We
divide the questions into five main categories: Economy, Politics, Science, Social, and Other. Each
category contains numerous subcategories for a total of 44 subcategories ranging from foreign policy
to Al. We list all subcategories in the Supplementary Material. The questions also cover a wide
geographical distribution, as shown in Figure 3. Overall, Autocast tests both breadth of subject matter
and depth (since questions ask for quantitative predictions about a specific, operationalized variable).

Adding new questions over time. The number of questions submitted to forecasting platforms is
rapidly increasing (Figure 2). If trends continue, in two years there will be twice as many questions
available. Autocast is a living dataset and will be updated periodically with new questions. This will
provide both more data for training and a new set of test questions (to assess overfitting).

Human forecasts. The human crowd forecast for a given question becomes more accurate from
the start to closing date, as shown in Figure 6. This is what we would expect if humans are updating
their forecasts as more information comes out. In contrast to most ML benchmarks, the human
crowd judgments are probabilistic. This allows us to evaluate their calibration. In the Supplementary
Material, we show that crowd forecasts are well-calibrated.

Distribution shift. We expect a distribution shift over time in both the questions being asked and in
the answers. For example, there will be fewer questions about Ukraine before 2022. This distribution
shift is inherent to forecasting and so it is crucial that models can manage it. We do find a shift in
the distribution of question categories. For example, the number of questions in the Social category
increased from 12.6% in the training set to 28.2% in the test set, possibly due the Covid-19 pandemic
(which is included in Social).

4 Experiments

4.1 Baselines

The Crowd baseline uses the final aggregate human forecast before the closing date. The Random
baseline uses the analytically computed random accuracy for true/false and multiple-choice questions.



For numerical questions, random predictions are sampled uniformly from the bounded range of
possible answers specified in each question.

Models without retrieval. We evaluate UnifiedQA-v2 (Khashabi et al., 2022) and 75 (Raffel et al.,
2020) models of various sizes. These models are trained on a variety of tasks, enabling strong
generalization on many unseen language tasks. Using zero-shot prompting for UnifiedQA, we report
results on classification questions. The UnifiedQA models were not trained on numerical questions,
hence, we report random performance to enable comparison with other baselines. TS5 is fine-tuned
using its original output head for true/false and multiple-choice questions. To output numerical
answers with T5, we add an additional linear output head.

Retrieval-Based Methods. We investigate

whether retrieval models can improve perfor- Question

mance by selecting relevant articles from the / ; ; ; ; ; )
news corpus included with Autocast. Impor- Who will win the?2022 presidential election
tantly, news articles after the close time or res- in the Philippines? (Resolves 5/9/ 22),
olution time of a question are not available for ‘

retrieval, so retrieved articles only include in- = Retrieved Articles

formation about the past. For all retrieval meth- & "Explainer: A guide to the Philippines 2022
ods, we use Fusion-in-Decoder or FiD (Izacard elections" (2/9/22)
and Grave, 2021) to encode articles retrieved "Marcos Jr holds big lead in poll for )
by BM2§ (Robertson et al., 1994;. Thakgr etal., Philippines presidency" (3/13/22)
2021) with cross-encoder reranking. FiD uses — - - <
T5 to encode retrieved passages along with the [ "Philippines’ Pacquiao says he L be
question and can be viewed as a minimal ex- counted out of presidential race (4/8/22))

tension of T5 for incorporating retrieval. We

truncate retrieved articles to a maximum length
of 512 tokens. Figure 5: Articles retrieved by BM25 for a Politics

question in the Autocast dataset with publication
dates in parentheses. The articles are retrieved
from 200GB of news and are highly relevant to
making an informed forecast.

The FiD Static baseline uses the top 10 retrieved
articles after reranking, which is the standard
method for retrieval-augmented prediction. The
FiD Temporal baseline leverages the interme-
diate crowd predictions (before the question is
resolved) as auxiliary supervision. The intuition is that crowd predictions will change based on
rational incorporation of new evidence, and these updates will not be captured by just training on the
final outcome. For each day between the question’s open and close date, we generate an embedding
of the top news article using the frozen fine-tuned FiD Static model. These embeddings are then
treated as input embeddings to an autoregressive model (GPT-2 (Radford et al., 2019)), which is
fine-tuned to predict the average of the daily crowd prediction and the ground truth outcome. We
illustrate this method in Figure 4. Figure 1 shows predictions from an FiD Temporal model over time
for an example question.

4.2 Metrics

For true/false and multiple-choice questions, we evaluate models using percent accuracy. For
numerical questions, we use /1 distance, bounded between 0% and 100%. We denote these question
types as T/F, MCQ, and Numerical, respectively. To evaluate aggregate performance, we use a
combined Score metric (T/F + MCQ — Numerical) /2, which has an upper bound of 100%. A score
of 100% indicates perfect prediction on all three question types. Note that since numerical question
responses are normalized between 0% and 100%, the combined Score metric is lower-bounded at
—50%. We also report the Average score, which averages the combined metric of all model sizes.

4.3 Forecasting Evaluation

Setup. We fine-tune the T5 baseline for 10 epochs with a batch size of 8, an initial learning rate
of 5 x 10~° with linear decay schedule, and a weight decay of 1 x 10~2. The maximum sequence
length of the T5 model is set to 512. We train FiD Temporal models for 5 epochs with a constant
learning rate of 5 x 10~°. Hyperparameters are selected based on early experiments. Additional
details are in the Supplementary Material.



Results. We show results in Table 2. Although UnifiedQA-v2 obtains strong performance on
various natural language benchmarks, it obtains close to random zero-shot performance on Autocast,
showing the difficulty of forecasting. Fine-tuned T5 performs better, but multiple-choice accuracy
is still at nearly random chance levels. Retrieval-based methods substantially outperform both
UnifiedQA-v2 and T5, showing a relative increase in the Average score of 93% and 15%, respectively.
Moreover, retrieval-based methods become more effective as parameter count increases, which
suggests that the models learn to extract relevant information from retrieved articles.

Comparing the FiD Static and FiD Temporal baselines, we see that the Average score is slightly
higher for FiD Temporal. However, the largest FiD Static model has the highest individual score.
Thus, our temporal training strategy for incorporating the auxiliary crowd predictions neither harms
nor helps compared to the static retrieval baseline. Future work could develop more effective ways of
using these auxiliary training signals.

4.4 Model Analysis

Relevance of Retrieved Articles. We find
that the retrieved articles are often highly rel- Performance Over Time
evant to the question. In Figure 5, we show 801
examples of articles retrieved by BM25 from
the news corpus in Autocast. Baseline models
have access to the article text, but for brevity 70
we only show the article title. The articles give 65 4
information that is clearly relevant for making 5

an informed forecast. Note that the TS back- &

= Ensemble (Ours)
75 m—— Crowd

bone for the baselines was pre-trained on data 351
from before 2020, far before the timeline of the 50
question, so retrieval provides vital information 451
that models would not otherwise have. This 40 —_—

suggests that large improvements on Autocast
could come from integrating information from
retrieved articles more effectively. We expect
that more sophisticated retrieval methods would
also improve performance, although efficiency
becomes a concern when using large retrieval
methods.
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Figure 6: For the crowd and an ensemble of the
two largest FiD Temporal models, prediction score
increases as the resolution date grows nearer. This
trend may be due to more relevant information
Detailed Performance. Inthe Supp]ementary becoming available over time, which the model
Material, we show the performance of baseline ~can access through retrieval from the news corpus.
methods on a more granular level. The per-

category results indicate that Science & Tech-

nology is the most challenging category for models, whereas human forecasters have relatively
consistent performance across categories. Inspecting the subset of questions that have been active
for at least two months, we also find that the accuracy of the human crowd forecast and a model
ensemble steadily increases over time up to the resolution date (Figure 6). This is to be expected,
as more information about the eventual outcome is available closer to the time (e.g. election polls
become more accurate). For this plot, we show an ensemble of the two largest FiD Temporal models,
which has slightly higher final performance than the individual models and a clearer trend over time.

5 Calibrated Prediction of Numerical Quantities

In our results, we evaluate baselines on the accuracy of their point estimates, rather than their
calibration. However, the eventual goal for Autocast is for models to achieve good calibration as well
as accuracy. Here we describe an auxiliary dataset that helps with this goal for the challenging case
of calibration on numerical questions.

The IntervalQA Dataset. In the Autocast training set, numerical quantities range over many
orders of magnitude. Furthermore, Autocast has fewer than 1,000 numerical training questions. This
problem of making calibrated predictions for quantities over many orders of magnitude using text
inputs has not been addressed in work on calibration for language models. To this end, we curate



Parameters Point Estimate Distance Conf. Interval Length RMS Calibration Error
22M 20.8 2072.4 19.1
44M 20.3 1115.7 16.6
86M 19.6 763.1 16.9
304M 18.1 305.4 13.5

Table 3: Results for DeBERTa-v3 models trained to output confidence intervals on our dataset of
numerical predictions. The high dynamic range of the targets leads to large confidence intervals, but
median interval size decreases with larger models as does RMS Calibration Error.

IntervalQA, an auxiliary dataset of numerical estimation problems and provide metrics to measure
calibration. The problems in the dataset are not forecasting problems but instead involve giving
calibrated predictions for fixed numerical quantities. The questions were sourced from NLP datasets
covering diverse topics and with answers varying across orders of magnitude: SQuAD, 80K Hours
Calibration (80k, 2013), Eighth Grade Arithmetic (Cobbe et al., 2021), TriviaQA (Joshi et al., 2017),
Jeopardy, MATH (Hendrycks et al., 2021b), and MMLU (Hendrycks et al., 2021a). We filtered these
datasets for questions with numerical answers, which yielded about 30,000 questions.

5.1 Metrics

We evaluate whether confidence intervals are calibrated. Concretely, if a method outputs 80%
confidence intervals on each test example, we would like the true prediction target to fall inside of
these intervals 80% of the time. Additionally, we would like for models to be calibrated across their
entire dynamic range of outputs. To measure this, we compute RMS Calibration Error similarly
to Nguyen and O’Connor (2015) and Hendrycks et al. (2019), but with fixed confidence levels
¢ € {50%,55%, ...,95%} and such that calibration is sensitive to dynamic range. We describe this
metric in detail in the Supplementary Material. Low RMS Calibration Error indicates that models are
calibrated across their entire dynamic range. We also compute the median prediction error between
the predicted point estimate and the ground-truth target (Point Estimate Distance) and the median
interval length averaged across all confidence levels (Conf. Interval Length).

5.2 Experiments

We fine-tune DeBERTa-v3 models (He et al., 2020) to predict a point estimate and a set of confidence
intervals corresponding to the confidence levels in the RMS calibration error metric. On a high level,
we use a loss with three components: (1) MSE loss between the predicted point estimate and the
ground-truth target, (2) MSE loss between the boundaries of the predicted confidence intervals and
the ground-truth target for boundaries that are on the wrong side of the target, (3) a penalty on the
length of the predicted intervals to encourage finer predictions. The models are trained for 5 epochs
with a batch size of 100. A detailed description is in the Supplementary Material. We show results in
Table 3. All three metrics decrease with model size.

6 Conclusion

We introduced Autocast, a dataset for measuring the ability of neural networks to forecast future
world events. The dataset contains thousands of forecasting questions from public forecasting
tournaments, including ground truth outcomes and aggregated human predictions. We also curated
a large corpus of news items from the Common Crawl news corpus, enabling rigorous evaluations
without information leakage. We evaluated numerous baseline algorithms and demonstrated that
model size and information retrieval can improve forecasting performance. To better evaluate
calibration for numerical prediction, we introduced IntervalQA, a large collection of numerical
prediction questions with a wide dynamic range of prediction targets, and evaluated state-of-the-art
language models. Our results show significant room for future improvement.
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A Additional Experimental Details and Results

A.1 Autocast Experiments

Calibration Results. In Figure 8, we show the adaptive binning calibration curve for crowd
forecasts on all resolved true/false questions by plotting the fraction of positives against the model’s
predicted probability for the positive class.

Additionally, we can compare the calibration of our static and temporal models to crowd performance
on the resolved test set. Treating true/false questions as two-class classification problems and
combining them with multiple-choice questions, we calculate adaptive binning calibration error with
a bin size of 50 samples. The largest FiD Static model incurs a 40% calibration error while the
human crowd incurs a much smaller 8% calibration error. By leveraging crowd predictions in our
FiD Temporal models, we reduce the calibration error to 17%, showing potential for improvements.

Model and Training Loss. The FiD Temporal model uses three separate linear heads after its
hidden state outputs to answer each type of questions (true/false, multiple-choice, and numerical). In
particular, the multiple-choice head has 12 outputs which is the maximum number of choices in the
training set. Additionally, the original input embeddings are replaced with a linear layer to map from
the FiD Static’s hidden states to the GPT-2’s hidden states. Finally, to make training more stable, we
average the loss over the sequence of predictions for each question to weigh the questions evenly.
Moreover, the losses of the three types of questions are normalized by their respective baseline loss
(uniformly random predictions) before summing together so that their losses are on the same scale.

Retrieval from CC-NEWS. Given a question, for each day the question is active, we retrieve the
top 10 relevant news articles from the daily articles. In our FiD-Temporal experiments, we only use
the top 1 from every day. Then, we aggregate all these articles from different dates and rank them
according to the retrieval score. The top 10 articles are used for the FiD-Static model. We follow the
Terms of Use for the Common Crawl website. The dataset is fully reproducible with the script to
download and filter CC-NEWS on GitHub.

A.2 Confidence Intervals

Interval Construction. In the reference implementation of the get_confidence_intervals function
in Figure 7, we construct our intervals by first producing a point estimate for each question and
iteratively adding on non-negative, non-symmetric deltas on both sides, so that the intervals become
nested and wider for higher confidence levels.

Training Loss for Baseline. First, because

the labels span a large numerical range, we nor- Resolved  Unresolved  Total
malize them by taking the lOg. Then, we CO.II- Trai 2815 1375 4190
struct a loss with three components shown in rain 4411 1974 6385
Figure 7: (1) £,: MSE loss between the pre-

dicted point estimate and the ground-truth tar-  aq¢ 907 1?“} 2517
get, (2) L,: MSE loss between the boundaries 1292 2305 3597
of the predicted confidence intervals and the Total 3722 2985 6707
ground-truth target for boundaries that are on ota 5703 4279 9982

the wrong side of the target, (3) £;: a penalty on
the length of the predicted intervals to encourage
finer predictions. Based on whether the ratio of
true labels contained in the predicted intervals
is higher than the target confidence level, we
either activate the boundary loss L;, or the inter-
val length loss £; for that particular confidence
level output. Lastly, the three components are
weighted by coefficients 1, 1, 0.01 chosen with
a simple search using the validation set.

Table 4: The number of forecasting questions in
Autocast. In total, there are nearly 10,000 ques-
tions. Gray text indicates the number of ques-
tions after augmenting true/false questions with
their negations, a procedure we use to balance the
dataset.

Adaptive RMS Metric. An important task for numerical forecasting is outputting calibrated
uncertainty estimates. However, a unique challenge in this setting is that answers can vary across
many orders of magnitude. To evaluate the calibration of confidence intervals across a large dynamic
range of output values, we design a specialized local calibration metric (Zhao et al., 2020; Kull et al.,
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Is = [0.5, 0.55, ..., 0.95]
num_intervals = len(Is)

def low_containment_mask(lowers, uppers, labels, Is):
# lowers, uppers: Predicted lower and upper bounds of intervals
# Is: Target confidence levels
# Returns: A list of boolean wvalues indicating which confidence level
# has containment ratio below the target level within batch
contained = (lowers <= labels) * (labels <= uppers)
ratio_contained = contained.mean(dim=0)
return ratio_contained < Is

def get_confidence_intervals(logits):
# logits: Model output with (2 * num_tintervals + 1) neurons
deltas, point_estimates = softplus(logits[:, :-1]), logits[:, -1:]
lower_deltas = deltas[:, :num_intervals]
higher_deltas = deltas[:, num_intervals:]
interval_lengths = lower_deltas + higher_deltas
# custom cumsum with gradients accumulated once on each delta
lower_deltas = utils.cumsum(lower_deltas)
higher_deltas = utils.cumsum(higher_deltas)
lowers = point_estimates - lower_deltas
uppers = point_estimates + higher_deltas

return lowers, uppers, point_estimates, interval_lengths

out = get_confidence_intervals(logits)
lowers, uppers, point_estimates, interval_lengths = out

L, = MSE(point_estimates, labels)

1_mask = lowers > labels

u_mask = uppers < labels

L, = MSE(lowers, labels) * 1_mask + MSE(uppers, labels) * u_mask
L; = MSE(interval_lengths, 0)

# normalize loss by the label magnitude, adjusting for small labels
L, /= (1 + abs(labels))

Ly, /= (1 + abs(labels))

L; /= (1 + abs(labels))

# activate loss for particular confidence levels based on ci_mask
ci_mask = low_containment_mask(lowers, uppers, labels, Is)

Ly = Lp.mean(dim=0) * ci_mask

L; = L;. mean(dim=0) * (1 - ci_mask)

a, B, v =1, 1, 0.01 # hyperparameters
a *x L,.mean() + B * Ly.mean() + v * L;.mean()

Figure 7: A reference implementation of the baseline training loss for outputting calibrated
confidence intervals. For the confidence levels where too few true labels fall inside the predicted
intervals, we encourage the model to adjust its boundaries through boundary loss L. Conversely, we
encourage the model to shrink the predicted intervals if too many fall inside the predicted intervals.

2019a), shown in Algorithm 1. First, test examples are sorted by their target value and split into bins
with a fixed number of examples each (adaptive binning). Then, we calculate calibration error across
all bins using a Euclidean norm (Hendrycks et al., 2019). Finally, we average this local calibration
error across all confidence levels, giving the final metric. For brevity, we refer to this overall metric as
RMS Calibration Error. A low value for this error metric indicates that models are calibrated across
their entire dynamic range of output values.
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Algorithm 1 RMS Calibration Error

1: Input: A set of N examples each with label {y;}¥; and C predicted confidence intervals
{(I¢ C)}cczjf,i=1 corresponding to C confidence levels {Z°}< ;| (e.g., Z¢ = 0.95). Set bin size

(R 1
to M.
function AdaptiveRMS
Sort the examples by labels yn in ascending order.

2:
3:
4:  Assign a bin label by, = L J + 1 to each by splitting sorted examples into chunks of M.
5
6
7

Let {B;}_, be the set of bins and B; the subset of examples in bin 4.
forc=1,...,Cdo
Calculate empirical containment for bin @

i Z (yw € [l ug])
kGB

8: Calculate root mean squared calibration error

b
1
c_ | = _ 2
RMS® = bZ(@f 7°)
i=1
9: end for
10:  Output £ 3 RMS®
11: end function

Crowd True/False Calibration Performance by Category
100

B FiD Static B FiD Temporal B Crowd

1l

; ; ; ; ; ; 0
0.0 02 04 06 0.8 1.0 Politics Social Economy Science &
Predicted Probability Technology

Figure 8: Left: Crowd forecasts for true/false questions have good calibration. Right: The per-
category performance of baselines. Score indicates the combined score metric.

Fraction of Positives
Score

Calibration Dataset Statistics. The dataset of numerical questions gathered for our calibration
evaluations has training, validation, and test sets containing 32,200, 3,443, and 6,170 examples
respectively.

B Additional Dataset Information ,
T/F MCQ Numerical

B.1 Dataset Details Train | 3187 753 471
Test 775 176 341

The Autocast dataset contains 6,707 unique ques-
tions in total, spanning three question types, includ- ~ Total | 3962 929 812
ing resolved and unresolved. After we balance the o
true/false questions by adding negated questions, the ~Table 5: The number of resglved questions 1n
true/false question count doubles, making the grand Autocast, grouped by question type.
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Category Percentage Subcategories

Geopolitics, Security and Conflict, Elections,
Politics 31% Foreign Policy, Leader Entry/Exit, Law,
Economic Policy, US Policy, Ukraine

COVID-19, Social Issues, Environment,
Effective Altruism, Sports, Entertainment, Health,
Society, Pandemic, Animal Welfare,
Metaculus, Climate, Education

Social 22%

Technology, Computing, Biological Sciences,
Science & Tech 21% Physical Sciences, Computer Science, Biology,
Human Sciences, Al, Mathematics, Tech

Business, Finance, Industry, Economic Indicators,

Economy 20% Infrastructure, Microelectronics, Semiconductors

Other 6% Other, Open

Table 6: The percentage of Autocast questions in each category, and the subcategories belonging to
each category. Autocast questions have fairly even coverage of a wide variety of topics.

total 9,757. The numbers of training and test examples are shown in Table 4 for ease of reference.
The numbers below are based on the expanded dataset using true/false balancing. The Autocast
training set we experiment with does not include unresolved questions. This training set contains
4,411 examples, and the test set contains 1,292 examples. To prevent leakage of future information,
the train set consists of all questions that closed or resolved before 5-11-2021 and the test set consists
of all questions that closed or resolved after 5-11-2021. In addition, we also release 1,974 unresolved
train questions having a publish date before 5-11-2021 and 2,305 unresolved test questions published
after 5-11-2021. Note that our baselines do not use any unresolved questions, so there is a guarantee
of no leakage. However, training with auxiliary training signals from unresolved questions (e.g.,
crowd forecasts) requires additional care to ensure no leakage. Namely, crowd forecasts from after
5-11-2021 must not be used.

Per-Category Performance. In Figure 8, we

show performance by category using the com- Active Durations of Resolved Questions
bined score metric. Science & Technology ques- 1000 1
tions are the most challenging for the FiD Static
and FiD Temporal baselines, while the crowd 800 |
predictions perform similarly on all question £
categories. There is a substantial gap between § 600
models and crowd predictions, but crowd predic- ¢
tions are still far from a perfect score of 100%. g 200
3
Computation of Crowd Forecasts. The hu- ©
man crowd forecasts are directly obtained from 200
forecasting platforms, and the precise mean-
ing depends on the platform. For example, for 077700 200 300 400 500 860 700
Metaculus questions the crowd forecast repre- Days Being Active

sents the median forecast with the recent player
predictions weighted more. For Good Judgment
Open questions, it represents the median of the
recent 40% of forecasts. In all cases, the crowd
forecast aggregates previous individual forecasts
at a given time.

Figure 9: We visualize the distribution of the du-
ration of the active periods for Autocast questions.
Questions vary greatly in terms of how long they
are active in the forecasting market, with questions
taking up to years to resolve.
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Figure 10: The same example from the Autocast dataset shown in Figure 1, illustrating how the
crowd forecast is influenced by news articles published throughout the prediction period.

C X-Risk Sheet

We provide an analysis of our paper’s contribution to reducing existential risk from future Al systems
following the framework suggested by (Hendrycks and Mazeika, 2022). Individual question responses
do not decisively imply relevance or irrelevance to existential risk reduction.

C.1 Long-Term Impact on Advanced AI Systems

In this section, please analyze how this work shapes the process that will lead to advanced Al systems
and how it steers the process in a safer direction.

1. Overview. How is this work intended to reduce existential risks from advanced Al systems?

Answer: This work builds towards improving institutional decision making and systemic safety.
In short, this could help resolve matters of fact that influence policies and decisions made by
political leaders in an increasingly complex modern world, putting humanity in a better place to
deal with the global turbulence and uncertainty created by Al systems when they rapidly reshape
society. A fuller motivation for “ML for Improving Epistemics” is described in Hendrycks and
Mazeika (2022).

2. Direct Effects. If this work directly reduces existential risks, what are the main hazards, vulnera-
bilities, or failure modes that it directly affects?

Answer: This directly works against failure modes such as eroded epistemics and hazards such as
highly persuasive or manipulative Al systems.

3. Diffuse Effects. If this work reduces existential risks indirectly or diffusely, what are the main
contributing factors that it affects?

Answer: This work could lead to improved decision making, epistemics, and collective intelli-
gence. Automated forecasting tools could eventually assist various levels of the sociotechnical
hierarchy, including congress and legislatures; government regulatory agencies, industry associ-
ations, user associations, etc.; and company management. This lowers the risk of conflict that
would accelerate the weaponization of Al, so it diffusely works against weaponized Al failure
modes.

4. What’s at Stake? What is a future scenario in which this research direction could prevent the
sudden, large-scale loss of life? If not applicable, what is a future scenario in which this research
direction be highly beneficial?
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Answer: Advanced automated forecasting better enables political leaders to avoid precarious
moments that could spark a large-scale conflict.

Result Fragility. Do the findings rest on strong theoretical assumptions; are they not demonstrated
using leading-edge tasks or models; or are the findings highly sensitive to hyperparameters? [

. Problem Difficulty. Is it implausible that any practical system could ever markedly outperform

humans at this task? O

Human Unreliability. Does this approach strongly depend on handcrafted features, expert
supervision, or human reliability? (]

Competitive Pressures. Does work towards this approach strongly trade off against raw intelli-
gence, other general capabilities, or economic utility? ]

C.2 Safety-Capabilities Balance

In this section, please analyze how this work relates to general capabilities and how it affects the
balance between safety and hazards from general capabilities.

9.

10.

11.

12.

13.

14.

Overview. How does this improve safety more than it improves general capabilities?

Answer: While this line of work reduces systemic risk factors and can improve institutional
decision making, making Al systems better at forecasting could potentially improve general
capabilities. Its relation to general capabilities is currently unclear. In humans, at the extremes, 1Q
is hardly predictive of forecasting ability, suggesting forecasting of near-term geopolitical events
is a specific and not general skill. Likewise, work in this space could focus on engineering better
forecasting systems rather than improving general representations, so as to avoid capabilities
externalities; this is potentially a more robust strategy for avoiding capabilities externalities. If it
turns out that capabilities externalities are difficult to avoid even while simply engineering better
forecasting systems, we would suggest that safety researchers stop working on this problem.

Red Teaming. What is a way in which this hastens general capabilities or the onset of x-risks?

Answer: Making Al systems better at forecasting could also improve general capabilities or at
least the raw power of Al systems. As Yann LeCun reminds us, “prediction is the essence of
intelligence.”

General Tasks. Does this work advance progress on tasks that have been previously considered
the subject of usual capabilities research? (]

General Goals. Does this improve or facilitate research towards general prediction, classification,
state estimation, efficiency, scalability, generation, data compression, executing clear instructions,
helpfulness, informativeness, reasoning, planning, researching, optimization, (self-)supervised
learning, sequential decision making, recursive self-improvement, open-ended goals, models
accessing the internet, or similar capabilities? X

Correlation With General Aptitude. Is the analyzed capability known to be highly predicted by
general cognitive ability or educational attainment? (|

Safety via Capabilities. Does this advance safety along with, or as a consequence of, advancing
other capabilities or the study of AI? X

C.3 Elaborations and Other Considerations

15.

Other. What clarifications or uncertainties about this work and x-risk are worth mentioning?

Answer: Regarding Q7, while human forecasters are important for building a training set with
rich annotations, the actual human forecasts are unnecessary, as technically only the resolutions
are needed. Additionally, the end goal is to create automated forecasting systems that do not
depend on human reliability. Eventually, these systems could become much faster and more
reliable than human forecasters.

Regarding Q12, this work facilitates research towards general prediction of future events and
consequently toward improved planning. However, we expect the kinds of predictions improved
by forecasting research to be especially relevant for reducing x-risk. For example, improved
institutional decision making surrounding geopolitical events could reduce the risk of global
conflicts leading to the weaponization of strong Al

19



Regarding Q13, IQ is predictive of forecasting ability in humans, not overwhelmingly so (Mellers
et al., 2015). Moreover, its correlation is especially weak at extremes. Likewise, forecasting skills
for near-term geopolitical events are partly learnable, further suggesting a separation from general
cognitive ability.

Regarding Q14, while the relationship between general capabilities and research on forecasting
near-term geopolitical events is currently unclear, this research does advance the study of narrow
Al systems.

Finally, we would like to discuss limitations and potential hazards of relying on ML for forecasting
near-term geopolitical events.

(a)

(b)

(©)

Forecasting is best used for refining understanding rather than for anticipating the future
more generally. Forecasters are demonstrated to be useful for optimizing probabilities
for somewhat likely events (e.g., events with probabilities between, say, 5% and 95%).
What is more important are tools that unearth important considerations that were implicitly
assigned negligible probabilities or wrongly treated by humans as misinformation or worth
ignoring. These considerations are often not forecasted and are not thought worth asking;
implicitly, such events could the thought to be assigned low probabilities (e.g., say 10~7),
while some people argue that these considerations are more likely than others believe (e.g.,
say 1071). The information value provided from putting ignored considerations on our radar
is substantial, in fact, orders of magnitude greater than the information gained by refining
probabilities by a few percent. Forecasting competitions are about refining estimates of
known unknowns—questions already on our radar-but what is better for risk reduction is
confronting unknown unknowns, finding considerations to put on our radar, and reducing
exposure to inchoate potential risks. For this reason, Hendrycks et al. (2021c) suggest tools
that improve brainstorming and suggesting considerations.

Forecasting is not necessarily a suitable tool for addressing tail risks. Taleb and Tetlock
(2013) remind us that “No one has yet figured out how to design a forecasting tournament to
assess the accuracy of probability judgments that range between .00000001% and 1%—and
if someone ever did, it is unlikely that anyone would have the patience—or lifespan—to run
the forecasting tournament for the necessary stretches of time (requiring us to think not just
in terms of decades, centuries and millennia).” Taleb and Tetlock (2013) further remind
us that it is unjustified to use forecasting tools for revolutions, market crashes, venture
capital, or other winner-take-all domains. Furthermore they note that framing questions
about tail risks as “a binary question is dangerous because it masks exponentially escalating
tail risks.” Consequently, “improving short-run probability judgments” and “contingency
planning for systemic [tail] risks” are “complementary” and separate (Tetlock et al., 2022).
Indeed, superforecasters usually anchor in outside view (Tetlock and Gardner, 2016), which
neglects systemic risks. In environments with tail events, it is not how often one is correct that
matters but rather how large one’s cumulative errors are; current forecasting metrics do not
sufficiently penalize forecasters that ignore tail risks nor do they greatly reward prescience
about Black Swans.

Forecasting tools could lead to risky behavior. For example, forecasting systems may induce
inaction. If forecasts are uncertain, leaders may argue that “we should not make a decision
before we have a reliable forecast” so we should “sit tight and assess.” This is sometimes
referred to as the delay fallacy, namely “if we wait we will know more about X, hence no
decision about X should be made now” (Hansson, 2004). However, it is often cheaper to
prevent risks or reduce exposure to risks, as “an existential risk needs to be killed in the egg,
when it is still cheap to do so” (Taleb et al., 2020). Waiting until all the relevant information
arrives is often waiting until it is too late.

Furthermore, humans are known to misinterpret probabilities (Vodrahalli et al., 2022). Sys-
tems that assign an event 3% probability may lead decision-makers to assume the event will
not happen. Automation bias may mean forecasting systems induce users to have a gain in
confidence that is greater than their gain in knowledge. Risk compensation suggests this
could result in riskier actions (Hedlund, 2000). Furthermore, forecasts are often not provided
with reverse psychology in mind. However, a forecasting system that forecasts a low risk
can lead users to act as though there is no risk and increase risky behavior, which increases
systemic risk.
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