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Abstract
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a
digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model
Platform to help developers build customized world models for their Physical AI setups. We position
a world foundation model as a general-purpose world model that can be fine-tuned into customized
world models for downstream applications. Our platform covers a video curation pipeline, pre-trained
world foundation models, examples of post-training of pre-trained world foundation models, and video
tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our
platform open-source and our models open-weight with permissive licenses available via NVIDIA Cosmos.

1. Introduction
Physical AI is an AI system equipped with sensors and actuators: the sensors allow it to observe the world,
and the actuators allow it to interact with and modify the world. It holds the promise of freeing human
workers from physical tasks that are dangerous, laborious, or tedious. While several fields of AI have advanced
significantly thanks to data and compute scaling in the recent decade, Physical AI only inches forward. This
is largely because scaling training data for Physical AI is much more challenging, as the desired data must
contain sequences of interleaved observations and actions. These actions perturb the physical world and may
cause severe damage to the system and the world. This is especially true when the AI is still in its infancy when
exploratory actions are essential. A World Foundation Model (WFM), a digital twin of the physical world that a
Physical AI can safely interact with, has been a long-sought remedy to the data scaling problem.

In this paper, we introduce the Cosmos World Foundation Model (WFM) Platform for building Physical AI.
We are mainly concerned with the visual world foundation model, where the observations are presented as
videos, and the perturbations can exist in various forms. As illustrated in Fig. 2, we present a pre-training-
and-then-post-training paradigm, where we divide WFMs into pre-trained and post-trained WFMs. To build
a pre-trained WFM, we leverage a large-scale video training dataset to expose the model to a diverse set of
visual experiences so it can become a generalist. To build a post-trained WFM, we fine-tune the pre-trained
WFM to arrive at a specialized WFM using a dataset collected from a particular Physical AI environment for the
targeted, specialized Physical AI setup. Fig. 1 shows example results from our pre-trained and post-trained
WFMs.

Data determines the ceiling of an AI model. To build a high-ceiling pre-trained WFM, we develop a video data
curation pipeline. We use it to locate portions of videos with rich dynamics and high visual quality that facilitate
learning of physics encoded in visual content. We use the pipeline to extract about 100M clips of videos ranging
from 2 to 60 seconds from a 20M hour-long video collection. For each clip, we use a visual language model
(VLM) to provide a video caption per 256 frames. Video processing is computationally intensive. We leverage
hardware implementations of the H.264 video encoder and decoder available in modern GPUs for decoding and
transcoding. Our video data curation pipeline leverages many pre-trained image/video understanding models.
These models have different throughputs. To maximize the overall throughput for generating trainable video
data, we build a Ray-based orchestration pipeline (Moritz et al., 2017). The details are described in Sec. 3.

We explore two scalable approaches for building pre-trained WFMs discussed in Sec. 5. These approaches are
1A detailed list of contributors and acknowledgments can be found in App. A of this paper.
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Pre-training: Diffusion WFM

Pre-training: Autoregressive WFM

Post-training: Camera Control

Post-training: Robotic Manipulation

Post-training: Autonomous Driving

Figure 1: Cosmos World Foundation Models. Pre-trained Cosmos WFMs generate high-quality 3D consistent
videos with accurate physics. The Cosmos suite of models includes both diffusion and autoregressive transformer
models, which are trained using continuous and discrete latent representations of videos, respectively. Post-
training these WFMs with specialized datasets enables them to be utilized in a wide range of Physical AI setups.
Specifically, we present models with camera controllability, models capable of instruction-following for robotic
manipulation, and models for autonomous driving scenarios. To check full videos and more video examples,
please visit our website.
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Figure 2: Pre-trained WFMs are world model generalists that are trained with large-scale, diverse video datasets
capturing different aspects of real-world physics. These pre-trained world foundation models can be specialized
to a target Physical AI setup through post-training. Usually, the datasets for post-training are “prompt”-video
pairs collected from the target Physical AI setup. The prompt can be in the form of action commands, trajectory,
instructions, etc. As the pre-trained WFM provides a great foundation, the dataset for post-training can be
much smaller. This pre-training-and-post-training yields an efficient strategy for building a Physical AI system.
In the figure, the dashed lines represent the data loop.

transformer-based diffusion models and transformer-based autoregressive models. A diffusion model generates
videos by gradually removing noise from a Gaussian noise video. An autoregressive model generates videos
piece by piece, conditioned on the past generations following a preset order. Both approaches decompose a
difficult video generation problem into easier sub-problems, making it more tractable. We leverage state-of-
the-art transformer architectures for their scalability. In Sec. 5.1, we present a transformer-based diffusion
model design that exhibits strong world-generation capabilities. In Sec. 5.2, we present a transformer-based
autoregressive model design for world generation.

Both the transformer-based diffusion model and transformer-based autoregressive model use tokens as rep-
resentations of videos, where the former uses continuous tokens in the form of vectors, and the latter uses
discrete tokens in the form of integers. We note that tokenization for videos—a process that transforms videos
into a set of tokens—is highly nontrivial. Video contains rich information about the visual world. However, to
facilitate learning of the WFMs, we need to compress videos into sequences of compact tokens while maximally
preserving the original contents in the videos as the computation complexity of world foundation model training
grows with the token counts. In many ways, building a video tokenizer is similar to building a video codec. We
develop an attention-based encoder-decoder architecture to learn video tokenization for both continuous and
discrete tokens described in Sec. 4.

We fine-tune the pre-trained WFMs to arrive at post-trained WFMs for various Physical AI tasks in Sec. 6.
In Sec. 6.1, we fine-tune our pre-trained diffusion WFM to make it camera pose conditional. This post-training
creates a navigable virtual world where users can explore the created world by moving the virtual viewpoint
around. In Sec. 6.2, we fine-tune our WFMs on various robotic tasks, which consist of video-action sequences.
We show that by leveraging the pre-trained WFMs, we can better predict the future state of the world based on
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the action taken by the robot. In Sec. 6.3, we demonstrate how the pre-trained WFMs can be fine-tuned for
various autonomous driving-related tasks.

Our intended use of the developed WFMs is for Physical AI builders. To better protect the developers when
using the world foundation models, we develop a powerful guardrail system that consists of a pre-Guard to
block harmful inputs and a post-Guard to block harmful outputs. The details are described in Sec. 7.

We aim to build a world foundation model platform to help Physical AI builders advance their systems. To
achieve this goal, we make our pre-trained world foundation models and tokenizers available under the NVIDIA
Open Model License at NVIDIA Cosmos and NVIDIA Cosmos Tokenizer respectively. The pre-training script
and post-training script will be available at NVIDIA Nemo Framework together with the video data curation
pipeline to help builders craft their fine-tuning datasets. While this paper makes several improvements in
world foundation model design, the world foundation model problem is still far from being solved. Additional
research is required to advance the state-of-the-art further.

2. World Foundation Model Platform
Let 𝑥0:𝑡 be a sequence of visual observations of the real world from time 0 to 𝑡. Let 𝑐𝑡 be the perturbation to the
world. As illustrated in Fig. 3, a WFM is a model 𝒲 that predicts the future observation at time 𝑡+ 1, �̂�𝑡+1,
based on the past observation 𝑥0:𝑡 and the current perturbation 𝑐𝑡. In our case, 𝑥0:𝑡 is an RGB video, while 𝑐𝑡 is
a perturbation that can take many forms. It can be an action taken by the Physical AI, a random perturbation,
a text description of the perturbation, etc.

𝑥0:𝑡

World Foundation Model: 𝒲
𝑐𝑡

�̂�𝑡+1

Figure 3: A world foundation model (WFM) 𝒲 is a model that generates the future state of the world 𝑥𝑡+1

based on the past observations 𝑥0:𝑡 and current perturbation 𝑐𝑡.

2.1. Future Cosmos
We believe a WFM is useful to Physical AI builders in many ways, including (but not limited to)

• Policy evaluation. This refers to evaluating the quality of a policy model in a Physical AI system. Instead
of evaluating a trained policy by deploying it to a Physical AI system operating in the real world, one
could instead let the digital copy of the Physical AI system interact with the world foundation model. The
WFM-based evaluation is more cost-effective and time-efficient. With the WFM, builders can deploy the
policy model in unseen environments that are otherwise unavailable. WFMs can help developers rule out
incapable policies quickly and focus the physical resources on a few promising ones.

• Policy initialization. A policy model generates actions to be taken by the Physical AI system based on
the current observations and the given task. A well-trained WFM, which models the dynamic patterns of
the world based on the input perturbations, can serve as a good initialization of the policy model. This
helps address the data scarcity problem in Physical AI.

• Policy training. A WFM paired with a reward model can be a proxy for the physical world to provide
feedback to the policy model in a reinforcement learning setup. The agent can gain proficiency in solving
tasks by interacting with the WFM.

• Planning or model-predictive control. A WFM can be used to simulate different future states following
different action sequences taken by a Physical AI system. A cost/reward module can then be used to
quantify the performance of these different action sequences based on the outcomes. The Physical AI
can then execute the best action sequence based on the simulation results as a whole, as in planning
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algorithms or in a receding horizon manner, as in model-predictive control. The accuracy of the world
model upper-bounds the performance of these decision-making strategies.

• Synthetic data generation. A WFM can be used to generate synthetic data for training. It can also be
fine-tuned to be conditioned on rendering metadata such as depth or semantic maps. One can use the
conditional WFM for the Sim2Real use case.

While we list the possibilities, this paper does not include empirical results in applying Cosmos WFMs to them.
We are eager to verify the claims in future work.

2.2. Current Cosmos

Video
Curator

Tokenizers
Pre-trained

World Foundation
Models

Guardrail

World Foundation 
Model 

Post-Training 
Samples

Cosmos

Figure 4: Cosmos World Foundation Model Platform consists of several major components: video curator, video
tokenizer, pre-trained world foundation model, world foundation model post-training samples, and guardrail.

Fig. 4 visualizes what is available in the Cosmos WFM platform that is included in this paper, which includes
video curator, video tokenization, world foundation model pre-training, world foundation model post-training,
and guardrail.

Video curator. We develop a scalable video data curation pipeline. Each video is split into individual shots
without scene changes. A sequence of filtering steps is then applied to the clips to locate high-quality and
dynamic information-rich subsets for training. These high-quality shots are then annotated using a VLM. We
then perform semantic de-duplication to construct a diverse but compact dataset.

Video tokenization. We develop a family of video tokenizers of different compression ratios. These tokenizers
are causal. The token computation for the current frames is not based on future observation. This causal design
has several benefits. On the training side, it makes joint image and video training possible since a causal video
tokenizer is also an image tokenizer when the input is a single image. This is important for the video model to
leverage image datasets for training, which contain rich appearance information of the worlds and tend to be
more diverse. On the application side, causal video tokenizers are better aligned with Physical AI systems that
live in the causal world.

WFM pre-training. We explore two scalable approaches for building pre-trained world foundation models—the
diffusion model and the autoregressive model. We use the transformer architecture for its scalability.

For the diffusion-based WFM, the pre-training consists of two steps: 1) Text2World generation pre-training
and 2) Video2World generation pre-training. Specifically, we train the model to generate a video world based
on the input text prompt. We then fine-tune it to generate a future video world based on the past video and an
input text prompt, which we refer to as the Video2World generation task.

For the autoregressive-based WFM, the pre-training consists of two steps: 1) vanilla next token generation and
2) text-conditioned Video2World generation. We first train the model to generate a future video world based
on the input of past video—foresight generation. We then fine-tune it to generate a future video world based
on the past video and a text prompt.

The video2world generation model is a pre-trained world model that generates the future based on the current
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observation (the past video) and control input (prompt). For both diffusion-based and autoregressive-based
WFMs, we build a family of models with different capacities and study their effectiveness on various downstream
applications.

We further fine-tune our pre-trained diffusion WFM to arrive at a diffusion decoder to enhance the generation
results of the autoregressive model. To better control the WFM, we also built a prompt upsampler based on a
Large Language Model (LLM).

World model post-training. We show applications of the pre-trained WFMs on several downstream Physical AI
applications. We fine-tune a pre-trained WFM with the camera pose as the input prompt. This allows us to
navigate freely in the created world. We also demonstrate how our pre-trained WFMs might be fine-tuned for
humanoid and autonomous driving tasks.

Guardrail. For safe usage of the developed world foundation models, we develop a guardrail system where
harmful inputs and outputs are blocked.

3. Data Curation
We describe our video curation pipeline, which produces high-quality training datasets for both tokenizers
and WFMs. As shown in Fig. 5, our pipeline consists of 5 main steps: 1) splitting, 2) filtering, 3) annotation,
4) deduplication, and 5) sharding. Every step is tailored to improve the data quality and accommodate the
requirements of model training. We first present our raw dataset and then describe each step in detail.

Raw
Input
Video

Split Filtering

• Shot Detection
• GPU-based 

Transcoding

Annotation DedupVideo Clip
Database

Sharding

• Motion Filtering
• Quality Filtering
• Overlay Text Filtering
• Video Type Filtering

• Video Description Generation

Figure 5: Cosmos Video Curator contains five major steps: 1) split, 2) filtering, 3) annotation, 4) dedup,
and 5) sharding. The split step divides a long video into shots and transcribes them into clips. The filtering
step removes clips that are of little value to world foundation model building. The annotation step adds a video
description to each clip. The clips are then stored in a video clip database. To obtain the training dataset, one
first performs semantic deduplication and then shards the video clips based on their resolutions and aspect
ratios.

3.1. Dataset
We use both proprietary video datasets and publicly available open-domain Internet videos to train our models.
Our goal is to enable Physical AI developers. To this end, we curate the video training dataset to cover various
Physical AI applications and target the following video categories:

1. Driving (11%),
2. Hand motion and object manipulation (16%),
3. Human motion and activity (10%),
4. Spatial awareness and navigation (16%),
5. First person point-of-view (8%),
6. Nature dynamics (20%),
7. Dynamic camera movements (8%),
8. Synthetically rendered (4%), and
9. Others (7%).
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These videos offer a broad coverage of different visual objects and actions. Their diversity improves the
generalization of our WFMs and helps the models handle different downstream tasks. The unstructured nature
of these videos and their sheer volume creates many challenges to processing them efficiently from both an
algorithmic and an infrastructural perspective. The videos can be encoded with a wide variety of codecs and
have different aspect ratios, resolutions, lengths, etc. Many videos have also been post-processed or edited with
different visual effects, which may induce unwanted artifacts in the generated videos and hurt the performance
of the world models if not appropriately handled.

In total, we accumulate about 20M hours of raw videos with resolutions from 720p to 4k. However, a significant
amount of the video data is either semantically redundant or does not contain useful information for learning
the physics of the world. Hence, we design a sequence of data processing steps to find the most valuable parts
of the raw videos for training. We also collect image data as joint-image-and-video training has been shown to
improve the visual quality of the generated videos and accelerate the model training. Thanks to the modular
design of our data curation pipeline, we can use it to process both image and video data and generate datasets
for both pre-training and fine-tuning. We generate about 108 video clips for pre-training and about 107 for
fine-tuning.

3.2. Splitting
Our videos have arbitrary lengths, and modern deep-learning models cannot directly consume very long videos.
Also, many videos contain shot transitions. They can start from one scene and then transition to a different
scene where the two scenes can be disconnected entirely, e.g., from two people talking in a modern kitchen in
New York City to a scene of lions chasing zebra in an African savanna. It is important to segment each video
based on its shot changes and generate visually consistent video clips so that the model can learn visual content
transitions that are physically plausible instead of artificially edited.

3.2.1. Shot Detection
Splitting aims to temporally segment raw videos of arbitrary lengths into clips without shot changes. It takes the
raw videos as input and generates each shot’s start and end frame indices. Clips shorter than 2s are discarded,
as they could be shot transitions or visual effects. Clips longer than 60s are further split to have a maximal
length of 60s. The subsequent filtering steps can then determine whether a clip contains useful information for
learning the physics of the world.

Shot boundary detection is a classical computer vision problem. Existing methods detect shot boundaries based
on changes in the visual feature space, but they differ in how to learn visual features from video frames. We
evaluate several algorithms for the task in Tab. 1: PySceneDetect (Castellano, 2024), Panda70M (Chen et al.,
2024), TransNetV2 (Soucek and Lokoc, 2024), and AutoShot (Zhu et al., 2023).

PySceneDetect is a popular library that detects shot changes by thresholding the temporal change of color
histogram in HSV space. Note that it is also adopted by the recent MovieGen work (Polyak et al., 2024).
Panda70M augments PySceneDetect with CLIP-embedding-based stitching and filtering. TransNetV2 and
AutoShot, on the other hand, are neural network-based, predicting a probability of each frame being a
transition frame given a 100-frame rolling input window.

It is critical to select an algorithm that can handle heavily edited videos well, as they often have complex
shot changes compounded with various visual effects. This motivates us to build a dedicated benchmark to
evaluate whether the method can generate clips with clean shot cuts from videos. Our benchmark (named
ShotBench2) includes existing datasets, such as RAI, BBC Planet Earth (AI Image Lab, University of Modena,
2016), ClipShots (Tang et al., 2018) and SHOT (Zhu et al., 2023). For ClipShots, we define the transition
frame as the midpoint of the start and end of each shot annotation to be consistent with other datasets.

2ShotBench is available at https://github.com/NVlabs/ShotBench.

7

https://github.com/NVlabs/ShotBench


Cosmos World Foundation Model Platform for Physical AI

Table 1: Comparison of splitting algorithms on different datasets.
Dataset Metric PySceneDetect Panda70M TransNetV2 AutoShot

BBC Precision ↑ 0.894 0.959 0.983 0.984
Recall ↑ 0.884 0.653 0.951 0.922
F1 ↑ 0.889 0.777 0.967 0.952

RAI Precision ↑ 0.856 0.933 0.918 0.889
Recall ↑ 0.807 0.746 0.921 0.923
F1 ↑ 0.831 0.829 0.919 0.906

SHOT Precision ↑ 0.769 0.949 0.883 0.866
Recall ↑ 0.673 0.462 0.767 0.804
F1 ↑ 0.718 0.622 0.821 0.834

ClipShots Precision ↑ 0.395 0.649 0.685 0.653
Recall ↑ 0.602 0.424 0.772 0.781
F1 ↑ 0.477 0.513 0.726 0.711

Tab. 1 compares the different methods on ShotBench. We set the confidence threshold to 0.4 for both TransNetV2
and AutoShot. For Panda70M, we follow their implementation for splitting, excluding the filtering steps, for a
fair comparison. End-to-end learning-based approaches (e.g., TransNetV2 and AutoShot) perform much better
than methods using hand-crafted features or heuristic rules (e.g., PySceneDetect and Panda70M). Though
TransNetV2 and AutoShot perform comparably on existing datasets, we found TransNetV2 works better on more
challenging shot changes. Using an end-to-end neural network (i.e., TransNetV2) also allows us to increase the
throughput of splitting by leveraging modern GPUs for acceleration without the hurdle of hybrid approaches
(such as Panda70M) that use complicated logic to combine PySceneDetect and ImageBind embeddings (Girdhar
et al., 2023).

3.2.2. Transcoding
Our videos use many different codecs with various settings, which poses challenges to data curation. We
re-encode each video clip from shot detection into a consistent, high-quality mp4 format. This simplifies the
subsequent data curation process. With a unified video codec, the stability and efficiency of our dataloader for
model training are also greatly improved. We use the h264_nvenc codec with a high bitrate and stress test our
setting using videos with fast motion and high-frequency texture to ensure no perceptible visual degradation.

We thoroughly evaluate different hardware and software configurations for transcoding to maximize the
throughput in Tab. 2. Modern GPUs provide hardware-accelerated video encoding and decoding capabilities.
NVIDIA L40S has hardware accelerators for both decoding (NVDEC) and encoding (NVENC), whereas NVIDIA
H100 only has NVDEC. We compensate H100 with the maximum available CPU cores (28 instead of 1) for a
fair comparison with L40S in Tab. 2. L40S has about 17% higher throughput than H100 (0.0674 vs. 0.0574).
For software configurations, switching from libx264 to h264_nvenc and transcoding multiple clips from the
same video in batches significantly boost the throughput. We observe issues with ffmpeg fully utilizing
NVDEC/NVENC accelerators, especially on multi-GPU nodes. Replacing ffmpeg with PyNvideoCodec for video
stream transcoding leads to much higher accelerator utilization and the biggest throughput improvement
(0.3702 vs. 0.1026). We only keep ffmpeg for audio remixing and use PyNvideoCodec to better leverage
the computing power in the GPUs. We achieve a ∼ 6.5× increase in throughput when combining all the
improvements together.

3.3. Filtering
The video clips produced from the splitting step are noisy, with vastly different qualities covering various
topics. We design the filtering step to 1) remove video clips whose visual quality fails to meet our minimal
requirements, 2) select high-quality video clips suitable for fine-tuning, and 3) tailor the data distribution for
building WFMs. We achieve the above goal by doing motion filtering, visual quality filtering, text filtering, and
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Table 2: Transcoding performance with different software settings.
Method GPU CPU Codec Batch NVDEC (#accelerator) NVENC (#accelerator) Throughput (videos/s)
ffmpeg H100 28 libx264 1 7 0 0.0574
ffmpeg L40S 1 h264_nvenc 1 3 3 0.0674
ffmpeg L40S 1 h264_nvenc 16 3 3 0.1026

pynvc+ffmpeg L40S 1 h264_nvenc 1 3 3 0.3702

video type filtering.

3.3.1. Motion Filtering
We have two main goals in motion filtering: 1) remove videos that are static or with random abrupt camera
motion (usually from hand-held cameras) and 2) tag videos with different types of camera motion (e.g., pan,
zoom, tilt, etc.), which can provide additional information to guide model training.

We build a lightweight classifier for motion filtering. The input to the classifier is a sequence of motion vectors or
optical flow extracted from a video clip. The classifier is based on the ViT architecture and is trained with labeled
videos. We experiment with motion vectors from h264 codec, the Farneback optical flow algorithm(Farnebäck,
2003), and an NVIDIA TensorRT-accelerated optical flow estimation network. We find that the classifier built
on top of the NVIDIA TensorRT-accelerated optical flow estimation works the best, producing high classification
accuracy for motion filtering.

3.3.2. Visual Quality Filtering
We consider two criteria, distortion and appearance quality, for visual quality-based filtering. First, we remove
video clips with distortions, such as artifacts, noise, blur, low sharpness, overexposure, underexposure, etc. We
use a video quality assessment model trained on human-rated videos based on DOVER (Wu et al., 2023). This
gives a perceptual quality score per clip, and we use the scores to remove clips that are in the bottom 15%.
Second, we filter out video clips with low appearance quality. We apply an image aesthetic model (Schuhmann,
2022) on sampled frames from an input clip. We set a conservative threshold, i.e., 3.5, since aesthetics are less
important for Physical AI.

3.3.3. Text Overlay Filtering
Some of our videos are post-processed to add text to include additional information for the viewer. We also
find that text tends to co-occur with different visual effects. Our goal is to learn the physics of the world. It is
crucial to remove videos with such excessive text. Note that we focus on text added in post-processing instead
of text in the original scene from which the video is created, such as the street names in driving videos.

We train an MLP-based binary classifier to detect such videos. The input to the classifier is a video embedding
extracted using InternVideo2 (Wang et al., 2025). We use a proprietary VLM to build the training set to label
positive and negative videos. Our trained model achieves high prediction accuracy in the validation set.

3.3.4. Video Type Filtering
To adjust the training data distribution and filter out unwanted video types, we design a comprehensive
taxonomy that categorizes videos based on their content type and visual style. We train a classifier to label
each video clip with categories from the taxonomy. We refine our data by excluding specific video types that
could lead to poor generation quality or unrealistic dynamics, such as abstract visual patterns, video game
footage, animated content, etc. We further adjust the data distribution by upsampling from categories that
are more relevant to WFMs (e.g., human action, human and object interaction, etc.) and downsampling on
categories that are less important (e.g., nature or landscape videos).

Given the absence of pre-existing labeled datasets matching our taxonomy, we leverage a proprietary VLM
to create training and evaluation data for the classifier. For each video clip, we prompt the VLM with eight
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uniformly sampled frames and query for the most appropriate taxonomy label. Using the annotated data, we
train an MLP classifier on the same InternVideo2 embeddings from text filtering.

3.4. Annotation
Text descriptions are usually paired with image and video data to provide supervision and conditions for
world model training. We use a VLM to generate high-quality and consistent captions for each video clip. We
configure the VLM in a way such that it focuses on the material facts and details in the videos. Using this
approach to provide descriptions of videos instead of relying on Alt text also eases the burden of learning for
world models as we do not need to adapt to different text styles or formats during training.

We test several SOTA methods (i.e., VFC (Ge et al., 2024), Qwen2-VL (Wang et al., 2024), VILA (Lin et al., 2024;
Xue et al., 2024)) for caption generation on our videos, and find VILA generates more accurate descriptions
based on a small-scale human evaluation. We use an internal VILA model with 13B parameters, fine-tuned
for video captioning. It has an enlarged context window suitable for processing long, multi-frame contexts,
with a max input and output token length of 5904 and 256, respectively. To improve the inference efficiency,
we use an FP8-quantized TensorRT-LLM engine, resulting in a 10 × speed-up in throughput compared to a
PyTorch half-precision baseline, as shown in Tab. 3. We prompt VILA with “Elaborate on the visual and narrative
elements of the video in detail” and feed it 8 uniformly sampled frames from the input clip. The average length
of captions is 559 characters or 97 words.

Table 3: Inference throughput comparison of VILA on a single H100 GPU.
Engine Precision Batch Size Throughput (clips/s) Throughput (tokens/s)

PyTorch FP16 1 0.21 49.6
TRT-LLM FP16 1 0.40 95.6
TRT-LLM FP16 16 1.09 260.9
TRT-LLM FP8 16 1.96 470.6

3.5. Deduplication
Given the sheer volume of our videos, there could be duplicated or near-duplicated samples in the training set.
It is critical to deduplicate the data to create a more balanced and diverse data distribution. It also improves
the efficiency of training and reduces the chance of memorizing specific training samples.

We adopt the approach from SemDeDup (Abbas et al., 2023) and DataComp (Gadre et al., 2024) for scalable
semantic deduplication. We reuse the InternVideo2 embeddings computed during filtering and cluster the
embeddings using a multi-node GPU-accelerated implementation of k-means (RAPIDS, 2023) with 𝑘 = 10, 000.
We compute the pairwise distances within each cluster of embeddings to identify duplicates. When duplicated
videos are detected, we choose the video with the highest resolution to ensure no quality is lost due to
deduplication. To avoid storing the entire pairwise distance matrix in GPU memory, we calculate on-the-fly the
necessary upper-triangular matrix and argmax reduction in blocks of 256. We remove about 30% of training
data during deduplication.

We also leverage the extracted InternVideo2 embeddings and clustering results to build a visual search engine
that supports querying the whole training dataset with free-form text and videos. The search engine is useful
for debugging issues in our data and understanding the gap between the pre-training dataset and downstream
applications.

3.6. Sharding
This step aims to package the processed video clips into webdatasets that our model trainer can directly
consume for training. We shard the videos based on their resolution, aspect ratio, and length to align with our
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training curriculum. Besides pre-training datasets, we also create fine-tuning datasets with even higher quality
by leveraging the different filters described above.

3.7. Infrastructure
Our data processing infrastructure uses AnyScale Ray (Moritz et al., 2017) to implement a streaming pipeline
system for geographically distributed clusters, addressing two key challenges in large-scale ML workflows:
efficient resource utilization across homogeneous nodes and robust operation over high-latency connections to
data sources. By decoupling data transfer from computation, pipelines operate efficiently with remote data
storage while maintaining memory requirements that scale with pipeline complexity rather than dataset size,
enabling unbounded stream processing.

Our architecture enables concurrent utilization of complementary hardware resources through parallel pipeline
stages, for instance, simultaneously using network bandwidth for data ingestion, NVDEC units for video
decoding, and GPUs for compute-intensive transformations. We extend the Fragmentation Gradient Descent
algorithm (Weng et al., 2023) to optimize this multi-resource allocation, with our scheduler automatically
scaling individual stages to maintain balanced throughput across specialized hardware accelerators.

4. Tokenizer
Tokenizers are fundamental building blocks of modern large-scale models. They transform raw data into
more efficient representations by learning a bottle-necked latent space discovered in an unsupervised manner.
Specifically, visual tokenizers map raw and redundant visual data—such as images and videos—into compact
semantic tokens, making them crucial for handling high-dimensional visual data. This ability not only enables
efficient training of large-scale transformer models but also democratizes their inference on limited computa-
tional resources. Fig. 6 schematically illustrates the tokenization training pipeline where the goal is to train the
encoder and decoder so that the bottleneck token representation maximally preserves visual information in the
input.

Token
Encoder

Token
DecoderTokens

Input
Video

Reconstructed
Video

Figure 6: Video tokenization pipeline. An input video is encoded into tokens, which are usually much more
compact than the input video. The decoder then reconstructs the input video from the tokens. Tokenizer
training is about learning the encoder and decoder to maximally preserve the visual information in the tokens.

Tokenizers come in two types: continuous and discrete (see Fig. 7 for illustrations). Continuous tokenizers en-
code visual data into continuous latent embeddings, as in latent diffusion models like Stable Diffusion (Rombach
et al., 2022) or VideoLDM (Blattmann et al., 2023). These embeddings are suitable for models that generate
data by sampling from continuous distributions. Discrete tokenizers encode visual data into discrete latent
codes, mapping them into quantized indices, as seen in autoregressive transformers such as VideoPoet (Kon-
dratyuk et al., 2024). This discrete representation is necessary for models such as GPT that are trained with
the cross-entropy loss. Fig. 7 illustrates the two types of tokens.

The success of tokenizers largely relies on their ability to deliver high compression rates without compromising
their subsequent visual reconstruction quality. On one hand, high compression reduces storage and computa-
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Figure 7: Visualization of continuous and discrete tokenizers. Tokens along spatial ( 𝐻
𝑠𝐻𝑊

× 𝑊
𝑠𝐻𝑊

) and
temporal (1 + 𝑇

𝑠𝑇
) dimensions, with a spatial compression factor of 𝑠𝐻𝑊 and a temporal compression factor of

𝑠𝑇 . The first temporal token represents the first input frame, enabling joint image (𝑇 = 0) and video (𝑇 > 0)
tokenization in a shared latent space. Left: Continuous latent embeddings with an embedding size of 𝐶. Right:
Quantized indices, each color representing a discrete latent code.

tional demands. On the other hand, excessive compression can lead to the loss of essential visual details. This
trade-off presents a significant challenge in tokenizer design.

We present Cosmos Tokenizer, a suite of visual tokenizers that includes both continuous and discrete tokenizers
for images and videos. Cosmos Tokenizer offers exceptional visual reconstruction quality and inference efficiency.
It offers a range of compression rates to accommodate diverse computational constraints and application needs.
Tab. 4 presents a comparison of different visual tokenizers and their capabilities.

Table 4: Comparison of different visual tokenizers and their capabilities.
Model Causal Image Video Joint Discrete Continuous
FLUX-Tokenizer (FLUX, 2024) - ✓ ✗ ✗ ✗ ✓

Open-MAGVIT2-Tokenizer (Luo et al., 2024) - ✓ ✗ ✗ ✓ ✗

LlamaGen-Tokenizer (Sun et al., 2024) - ✓ ✗ ✗ ✓ ✗

VideoGPT-Tokenizer (Yan et al., 2021) ✗ ✗ ✓ ✗ ✓ ✗

Omni-Tokenizer (Wang et al., 2024) ✗ ✓ ✓ ✓ ✓ ✓

CogVideoX-Tokenizer (Yang et al., 2024) ✓ ✓ ✓ ✓ ✗ ✓

Cosmos-Tokenizer ✓ ✓ ✓ ✓ ✓ ✓

We design Cosmos Tokenizer using a lightweight and computationally efficient architecture with a temporally
causal mechanism. Specifically, we employ causal temporal convolution layers and causal temporal attention
layers to preserve the natural temporal order of video frames, ensuring seamless tokenization of images and
videos using a single unified network architecture.

We train our tokenizers directly on high-resolution images and long-duration videos without limiting the
categories or aspect ratios. Unlike existing tokenizers that focus on specific data categories and sizes, the
Cosmos Tokenizer operates across various aspect ratios—including 1:1, 3:4, 4:3, 9:16, and 16:9. They are
temporally length-agnostic during inference, capable of tokenizing beyond the temporal length on which it was
trained.

We also evaluate our tokenizers on standard image and video benchmarking datasets, including MS-COCO
2017 (Lin et al., 2014), ImageNet-1K (Deng et al., 2009), and DAVIS (Perazzi et al., 2016). To facilitate
the video tokenization study for Physical AI applications, we curate a video dataset that covers many video
categories for Physical AI, ranging from fish-eye, robotics, driving, human activities, and spatial navigation.
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The dataset is available at github.com/NVlabs/TokenBench.
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Figure 8: Comparison of continuous (left) and discrete (right) tokenizers in terms of spatio-temporal
compression rate (log scale) versus reconstruction quality (PSNR). Each solid point represents a tokenizer
configuration, illustrating the trade-off between compression rate and quality. Notably, our tokenizer demon-
strates an excellent compression-quality trade-off, delivering superior quality even at higher compression rates
compared to other methods. The evaluation was performed on the DAVIS dataset. We calculate the PSNR of
image tokenizers on all the individual frames.

As shown in Fig. 8, our evaluation results demonstrate Cosmos Tokenizer significantly outperforms existing
tokenizers by a large margin—for instance, achieving a +4 dB PSNR improvement in reconstruction quality on
DAVIS videos. It runs up to 12× faster and can encode videos up to 8 seconds at 1080p and 10 seconds at
720p in one shot without running out of memory on a single NVIDIA A100 GPU with 80GB memory. A suite of
pre-trained models, with spatial compression of 8× and 16×, and temporal compression factors of 4× and 8×
is available at github.com/NVIDIA/Cosmos-Tokenizer.

4.1. Architecture
Cosmos Tokenizer is designed as an encoder-decoder architecture. Given an input video 𝑥0:𝑇 ∈ R(1+𝑇 )×𝐻×𝑊×3,
with 𝐻, 𝑊 , 𝑇 being the height, width, and number of frames, the encoder (ℰ) tokenizes the inputs into a
token video 𝑧0:𝑇 ′ ∈ R(1+𝑇 ′)×𝐻′×𝑊 ′×𝐶 , with a spatial compression factor of 𝑠𝐻𝑊 = 𝐻

𝐻′ =
𝑊
𝑊 ′ and a temporal

compression factor of 𝑠𝑇 = 𝑇
𝑇 ′ . The decoder (𝒟) then reconstructs the input video from these tokens, resulting

in the reconstructed video �̂�0:𝑇 ∈ R(1+𝑇 )×𝐻×𝑊×3, mathematically given by:

�̂�0:𝑇 = 𝒟
(︁
ℰ
(︀
𝑥0:𝑇

)︀)︁
. (1)

Our architecture employs a temporally causal design, ensuring that each stage processes only current and past
frames, independent of future frames. Unlike common approaches, our tokenizer operates in the wavelet space,
where inputs are first processed by a 2-level wavelet transform. Specifically, the wavelet transform maps the
input video 𝑥0:𝑇 in a group-wise manner to downsample the inputs by a factor of four along 𝑥, 𝑦, and 𝑡. The
groups are formed as: {𝑥0, 𝑥1:4, 𝑥5:8, ..., 𝑥(𝑇−3):𝑇 } → {𝑔0, 𝑔1, 𝑔2, ..., 𝑔𝑇/4}. Subsequent encoder stages process
the frames in a temporally causal manner as {𝑔0, 𝑔0:1, 𝑔0:2, ...} → {𝜉0, 𝜉1, 𝜉2, ...}. Successive encoder stages
follow a similar scheme, finally outputting the tokens 𝑧0:𝑇 ′ . The causal design helps adapt models built on top
of the tokenizer to downstream Physical AI applications that often operate on the temporal causal setting. The
wavelet transform allows us to operate on a more compact video representation that eliminates redundancies
in pixel information, allowing the remaining layers to focus on more semantic compression.
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Our encoder stages (post wavelet transform) are implemented using a series of residual blocks interleaved
with downsampling blocks. In each block, we employ a spatio-temporal factorized 3D convolution, where
we first apply a 2D convolution with a kernel size of 1 × 𝑘 × 𝑘 to capture spatial information, followed by
a temporal convolution with a kernel size of 𝑘 × 1 × 1 to capture temporal dynamics. We use left padding
of 𝑘 − 1 to ensure causality. To capture long-range dependencies, we utilize a spatio-temporal factorized
causal self-attention with a global support region—for instance, 1 + 𝑇 ′ for the last encoder block. We use the
Swish activation function (Ramachandran et al., 2017) for non-linearity. We leverage Layer Normalization
(LayerNorm) (Lei Ba et al., 2016) instead of Group Normalization (GroupNorm) (Wu and He, 2018), which
prevents large magnitudes from appearing in specific regions of the latent space or reconstructed outputs (Karras
et al., 2020; Sadat et al., 2024). The decoder mirrors the encoder, replacing the downsampling blocks with an
upsampling block. Fig. 9 depicts an overview of the overall Cosmos Tokenizer architecture.

𝑥0 𝑥1 𝑥2 𝑥3 𝑥5𝑥4 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12

𝑔0 𝑔1 𝑔2 𝑔3

𝝃0 𝝃1 𝝃2 𝝃3

Wavelet3D 

Transform

Spatio-Temporal

Convolution and 

Self-Attention

(a) Temporal Causality: Illustration of the temporal causality mech-
anism, where inputs 𝑥0, 𝑥1, . . . , 𝑥12 are processed through grouped
intermediate outputs 𝑔0, 𝑔1, . . . , and further refined by spatio-temporal
convolution and attention operations.
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(b) Network Architecture: The encoder-decoder
network structure includes a 3D Haar wavelet,
causal residual, causal downsampling, and causal
spatio-temporal attention blocks. The decoder
mirrors the encoder’s structure, replacing down-
sampling with upsampling.

Figure 9: Overall Cosmos Tokenizer architecture illustrating the integration of temporal causality and an
encoder-decoder structure. Temporal causality (left) processes sequential inputs, while the encoder-decoder
(right) leverages wavelet transforms and causal operations to capture spatial and temporal dependencies in the
data.

We employ the vanilla autoencoder (AE) formulation to model the continuous tokenizer’s latent space. For
discrete tokenizers, we adopt the Finite-Scalar-Quantization (FSQ) (Mentzer et al., 2023) as the latent space
quantizer. The latent dimension for the continuous tokenizers is 16, whereas for the discrete tokenizers, it is 6,
which represents the number of the FSQ levels, which are (8, 8, 8, 5, 5, 5). This configuration corresponds to a
vocabulary size of 64,000.

4.2. Training Strategy
We employ a joint training strategy by alternating mini-batches of images and videos at a preset frequency.
We only supervise the final output of our tokenizer’s decoder. We do not use auxiliary losses tapped into the
latent spaces, such as commitment or KL prior losses. For example, if a VAE (Kingma, 2013) formulation
were used for continuous tokenizers instead of the vanilla AE, one would need to have the KL prior loss. If a
VQ-VAE (van den Oord et al., 2017) were used for discrete quantization instead of the FSQ, one would need to
have the commitment loss.

We employ a two-stage training scheme. In the first stage, we optimize with the L1 loss that minimizes the
pixel-wise RGB difference between the input and reconstructed video (�̂�0:𝑇 ), given by

ℒ1 = ‖�̂�0:𝑇 − 𝑥0:𝑇 ‖1 , (2)
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and the perceptual loss based on the VGG-19 features (Simonyan and Zisserman, 2014), given by,

ℒPerceptual =
1

𝐿

𝐿∑︁
𝑙=1

∑︁
𝑡

𝛼𝑙 ‖VGG𝑙(�̂�𝑡)− VGG𝑙(𝑥𝑡)‖1 , (3)

where VGG𝑙(·) ∈ R𝐻×𝑊×𝐶 is the features from the 𝑙-th layer of a pre-trained VGG-19 network, 𝐿 is the number
of layers considered, and 𝛼𝑙 is the weight of the 𝑙-th layer.

Figure 10: Example videos from TokenBench. This figure shows diverse examples, including egocentric,
driving, robotic manipulation, and web videos.

In the second stage, we use the optical flow (OF) loss (Teed and Deng, 2020) to handle the temporal smoothness
of reconstructed videos,

ℒFlow =
1

𝑇

𝑇∑︁
𝑡=1

‖OF(�̂�𝑡, �̂�𝑡−1)− OF(𝑥𝑡, 𝑥𝑡−1)‖1 +
1

𝑇

𝑇−1∑︁
𝑡=0

‖OF(�̂�𝑡, �̂�𝑡+1)− OF(𝑥𝑡, 𝑥𝑡+1)‖1 ,

and the Gram-matrix (GM) loss (Gatys et al., 2016) to enhance the sharpness of reconstructed images,

ℒGram =
1

𝐿

𝐿∑︁
𝑙=1

∑︁
𝑡

𝛼𝑙 ‖GM𝑙(�̂�𝑡)− GM𝑙(𝑥𝑡)‖1 . (4)

Additionally, we use adversarial loss in the fine-tuning stage to further enhance reconstruction details, particu-
larly at large compression rates.

We train the image tokenizers (denoted as CI and DI) at two compression rates: 8× 8 and 16× 16. Similarly,
we train the video tokenizers (denoted as CV and DV) at three compression rates: 4× 8× 8, 8× 8× 8, and
8× 16× 16. Here, the compression rates are expressed as 𝐻 ×𝑊 for images and 𝑇 ×𝐻 ×𝑊 for videos, where
𝑇 represents the temporal dimension, and 𝐻 and 𝑊 represent the spatial dimensions.

For the video tokenizers, we create two variants:
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Table 5: Evaluation of continuous video (CV) tokenizers on DAVIS and TokenBench.
DAVIS TokenBench

Tokenizer Frames Formulation PSNR ↑ SSIM ↑ rFVD ↓ PSNR ↑ SSIM ↑ rFVD ↓

CogVideoX-Tokenizer4×8×8 17 VAE 29.29 0.864 19.58 32.06 0.909 6.97
Omni-Tokenizer4×8×8 17 VAE 22.23 0.713 117.66 24.48 0.830 35.86

Cosmos-0.1-Tokenizer-CV4×8×8 49 AE 32.80 0.900 15.93 35.45 0.928 6.85
Cosmos-0.1-Tokenizer-CV8×8×8 49 AE 30.61 0.856 30.16 34.44 0.917 11.62

Cosmos-0.1-Tokenizer-CV8×16×16 49 AE 27.60 0.779 93.82 31.61 0.875 43.08
Cosmos-1.0-Tokenizer-CV8×8×8 121 AE 31.28 0.868 23.49 35.13 0.926 9.82

Table 6: Evaluation of discrete video (DV) tokenizers on DAVIS and TokenBench.
DAVIS TokenBench

Tokenizer Frames Quantization PSNR ↑ SSIM ↑ rFVD ↓ PSNR ↑ SSIM ↑ rFVD ↓

VideoGPT-Tokenizer4×4×4 - VQ 28.17 0.850 72.33 33.66 0.914 13.85
Omni-Tokenizer4×8×8 17 VQ 20.02 0.703 188.60 25.31 0.827 53.55

Cosmos-0.1-Tokenizer-DV4×8×8 17 FSQ 28.81 0.818 37.36 31.97 0.888 19.67
Cosmos-0.1-Tokenizer-DV8×8×8 17 FSQ 27.51 0.789 100.15 30.95 0.873 43.86

Cosmos-0.1-Tokenizer-DV8×16×16 17 FSQ 25.09 0.714 241.52 28.91 0.829 113.48
Cosmos-1.0-Tokenizer-DV8×16×16 49 FSQ 25.49 0.719 259.33 29.33 0.838 107.43

1. Cosmos-0.1-Tokenizer: Trained using mini-batches sampling a smaller number of video frames (49
frames for CV and 17 frames for DV).

2. Cosmos-1.0-Tokenizer: Trained using mini-batches sampling a larger number of video frames (121
frames for CV and 49 frames for DV).

This approach ensures flexibility in handling varying temporal and spatial resolutions for image and video data.

4.3. Results
We extensively evaluate our Cosmos Tokenizer suite on various image and video benchmark datasets. For the
evaluation of image tokenizers, we follow prior art to evaluate MS-COCO 2017 (Lin et al., 2014) and ImageNet-
1K (Deng et al., 2009). We use the MS-COCO 2017 validation subset of 5,000 images, and ImageNet-1K
validation subset of 50,000 images as image evaluation benchmark.

TokenBench. For video tokenizer evaluation, there is not yet a standard benchmark for high-resolution and
long-duration videos. To this end, we introduce a benchmark called TokenBench to cover a wide variety of
domains, including robotic manipulation, driving, egocentric, and web videos, and standardize the evaluation.
We resort to existing video datasets that are commonly used for various tasks, including BDD100K (Yu et al.,
2020), EgoExo-4D (Grauman et al., 2024), BridgeData V2 (Walke et al., 2023), and Panda-70M (Chen et al.,
2024). We randomly sample 100 videos from each dataset and preprocess them by taking the first 10 seconds
and resizing the short size to 1080. For Panda-70M, we manually filter out the videos with low-quality content
and small motions. For EgoExo-4D, we randomly pick 100 scenes and sample one egocentric video and one
exocentric video. This results in a total of 500 videos. Some examples of TokenBench can be found in Fig. 10.
We release TokenBench at the github.com/NVlabs/TokenBench.

In addition to TokenBench, we also evaluate our video tokenizers on the DAVIS dataset at 1080p resolution.

Baselines and evaluation metrics. We evaluate our tokenizers at various compression rates to showcase their
effectiveness for different computational needs. We compare each of these tokenizers with state-of-the-art
image and video tokenizers. Tab. 4 presents the specific SOTA tokenizers we compared against in various
settings. The evaluation metrics include Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM),
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Table 7: Evaluation of continuous image (CI) tokenizers on various image datasets.
(a) MS-COCO 2017 (b) ImageNet-1K

Tokenizer Height Formulation PSNR ↑ SSIM ↑ rFID ↓ PSNR ↑ SSIM ↑ rFID ↓

FLUX-Tokenizer8×8 - VAE 24.00 0.682 2.501 20.09 0.518 1.229
Cosmos-0.1-Tokenizer-CI8×8 1024 AE 28.66 0.836 1.760 28.83 0.837 0.689

Cosmos-0.1-Tokenizer-CI16×16 1024 AE 23.63 0.663 3.823 23.72 0.655 1.031

Table 8: Evaluation of discrete image (DI) tokenizers on various image datasets.
(a) MS-COCO 2017 (b) ImageNet-1K

Tokenizer Height Quantization PSNR ↑ SSIM ↑ rFID ↓ PSNR ↑ SSIM ↑ rFID ↓

Open-MAGVIT2-Tokenizer16×16 - LFQ 19.50 0.502 6.649 17.00 0.398 2.701
LlamaGen-Tokenizer8×8 - VQ 21.99 0.616 4.123 19.64 0.498 1.403

LlamaGen-Tokenizer16×16 - VQ 19.11 0.491 6.077 18.38 0.448 1.657
Cosmos-0.1-Tokenizer-CI8×8 1024 FSQ 24.40 0.704 3.710 24.48 0.701 1.265

Cosmos-0.1-Tokenizer-CI16×16 1024 FSQ 20.45 0.529 7.234 20.49 0.518 2.518

Table 9: Runtime performance comparison of tokenizers. Time is reported per image or per video frame.
Tokenizer Type Resolution Frames Parameters Time (ms)

FLUX-Tokenizer8×8 Continuous-Image 1024× 1024 - 84M 242
Cosmos-0.1-Tokenizer-CI8×8 Continuous-Image 1024× 1024 - 77M 62.7

LlamaGen-Tokenizer8×8 Discrete-Image 1024× 1024 - 70M 475
Cosmos-0.1-Tokenizer-DI8×8 Discrete-Image 1024× 1024 - 79M 64.2

CogVideoX-Tokenizer4×8×8 Continuous-Video 720× 1280 17 216M 414
Omni-Tokenizer4×8×8 Continuous-Video 720× 1280 17 54M 82.9

Cosmos-0.1-Tokenizer-CV4×8×8 Continuous-Video 720× 1280 49 105M 34.8

Omni-Tokenizer4×8×8 Discrete-Video 720× 1280 17 54M 53.2
Cosmos-0.1-Tokenizer-DV4×8×8 Discrete-Video 720× 1280 17 105M 51.5

reconstruction Fréchet Inception Distance (rFID) (Heusel et al., 2017) for images, and reconstruction Fréchet
Video Distance (rFVD) (Unterthiner et al., 2019) for videos.

Quantitative results. Tabs. 5 and 6 summarize the average quantitative metrics of continuous and discrete
video tokenizers on various benchmarks. As shown in both tables, Cosmos Tokenizer achieves state-of-the-art
performance in all the metrics compared to prior arts on both the DAVIS video dataset and TokenBench, with a
spatial-temporal compression ratio of 4× 8× 8. Moreover, even with 2× and 8× higher compression ratios
(i.e., 8× 8× 8 and 8× 16× 16), Cosmos Tokenizer still achieves better quality than prior art, showcasing an
excellent compression-quality trade-off.

Tabs. 7 and 8 summarize the average quantitative metrics of continuous and discrete image tokenizers on
various image benchmarks, covering a wide range of image types. As shown, compared to prior arts, Cosmos
Tokenizer consistently achieves state-of-the-art results with a compression ratio of 8× 8. More importantly, at
a 4× larger compression ratio of 16× 16, the image quality of Cosmos Tokenizer is often comparable or even
better than prior art at 8× 8 compression ratio, as shown in Tabs. 7 and 8.

These quantitative results on a variety of image and video benchmark datasets confirm that Cosmos Tokenizer
is able to better represent visual content with large spatial-temporal compression.

Runtime performance. Tab. 9 shows the number of parameters and the averaged encoding and decoding
times per image or per video frame, measured on a single A100 80GB GPU. In comparison, we also list the
parameters and the average speeds of prior state-of-the-art tokenizers. As shown, for both image and video
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tokenizers, Cosmos Tokenizer is 2× ∼ 12× faster while maintaining the smallest model size compared to prior
arts, showing that Cosmos Tokenizer has high efficiency for encoding and decoding visual content.

5. World Foundation Model Pre-training
Pre-trained WFMs are generalists that capture general knowledge of real-world physics and natural behaviors.
We exploit two different scalable deep learning paradigms, diffusion models and autoregressive models, to
build two families of WFMs. Both diffusion models and autoregressive models break a difficult generation
problem into a sequence of easier sub-problems and have been turbo-charging the development of generative
models. In the case of diffusion models, the difficult generation problem is divided into a sequence of denoising
problems. In the case of autoregressive models, the difficult generation problem is divided into a sequence
of next-token prediction problems. We discuss how we scale these deep learning paradigms using various
parallelization techniques tailored for modern GPUs in our endeavor of building pre-trained WFMs. We train
all of the WFM models reported in the paper using a cluster of 10,000 NVIDIA H100 GPUs in a time span of
three months.
Table 10: Maps of Cosmos World Foundation Model 1.0 Release. We have two sets of WFMs. One is based on
diffusion models, while the other is based on autoregressive models. For each family, we build two base models
and two derivative models. To achieve the best generation quality, we also build a prompt upsampler for the

diffusion models and a diffusion decoder for the autoregressive models.

Type Models Tokenizer Enhancer

Diffusion

Cosmos-1.0-
Diffusion-7B-
Text2World →

Cosmos-1.0-
Diffusion-7B-
Video2World Cosmos-1.0-

Tokenizer-
CV8x8x8

Cosmos-1.0-
PromptUpsampler-
12B-Text2WorldCosmos-1.0-

Diffusion-14B-
Text2World

→
Cosmos-1.0-

Diffusion-14B-
Video2World

Autoregressive

Cosmos-1.0-
Autoregressive-

4B →

Cosmos-1.0-
Autoregressive-
5B-Video2World Cosmos-1.0-

Tokenizer-
DV8x16x16

Cosmos-1.0-
Diffusion-7B-
Decoder-

DV8x16x16ToCV8x8x8Cosmos-1.0-
Autoregressive-

12B
→

Cosmos-1.0-
Autoregressive-

13B-Video2World

In Tab. 10, we present a map of our pre-trained WFMs and their companions. For the diffusion-based WFM
family, we start by building two Text2World models of 7B and 14B, respectively, which render Cosmos-1.0-
Diffusion-7B-Text2World and Cosmos-1.0-Diffusion-14B-Text2World. These models can map text prompts to
videos of visual worlds. We then fine-tune the Text2World models to take additional video input, representing the
current observation. The result is a Video2World model where the future video is predicted based on the current
observation (input video) and the perturbation (text prompt). These diffusion models are latent diffusion
models that take continuous tokens. We use Cosmos-1.0-Tokenizer-CV8x8x8 to produce the visual tokens.
The training text prompts for the WFMs are produced by a VLM through video description generation. These
descriptions follow a different distribution of human descriptions of videos. To mitigate the domain gap, we
build Cosmos-1.0-PromptUpsampler-12B-Text2World based on the Mistral-NeMo-12B-Instruct model (Mistral
and NVIDIA, 2024) to help convert human text prompts to those preferred by our diffusion-based WFMs.

For the autoregressive-based WFM family, we first build two base models that are 4B and 12B in size, respec-
tively, to predict future videos purely based on the current video observation. We name them Cosmos-1.0-
Autoregressive-4B and Cosmos-1.0-Autoregressive-12B, respectively. These are Llama3-style GPTmodels trained
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from scratch for the video prediction task and bear no language understanding. To enable autoregressive-based
WFMs to utilize textual information for next token prediction, we incorporate T5 embeddings of the input
text prompt into the WFMs through cross-attention layers added to the transformer blocks. These autore-
gressive WFMs use Cosmos-1.0-Tokenizer-DV8x16x16, which maps an input video to a few integers. The
heavy compression of the tokenizer can sometimes lead to undesired distortions. To address the problem, we
build a diffusion decoder (Cosmos-1.0-Diffusion-7B-Decoder-DV8x16x16ToCV8x8x8) through fine-tuning the
Cosmos-1.0-Diffusion-7B-Text2World model to map discrete tokens in the DV8x16x16 space to continuous
tokens in the CV8x8x8 space.

5.1. Diffusion-based World Foundation Model
Our diffusion-based WFMs are latent diffusion models that operate within a learned latent space of a tok-
enizer, enabling a compact, reduced-dimensional representation of videos. This design choice offers several
advantages: it reduces computational costs during both training and inference while simplifying the denoising
task (Hoogeboom et al., 2024; Rombach et al., 2022). To tokenize videos into latent representations, we
employ Cosmos-1.0-Tokenizer-CV8x8x8.

5.1.1. Formulation
To train our diffusion WFMs, we adopt the approach outlined in EDM (Karras et al., 2022, 2024). The denoising
score matching loss for the denoiser 𝐷𝜃, evaluated at a noise level 𝜎, is defined as

ℒ(𝐷𝜃, 𝜎) = Ex0,n

[︁⃦⃦
𝐷𝜃(x0 + n;𝜎)− x0

⃦⃦2
2

]︁
, (5)

where x0 ∼ 𝑝data is a clean image or video sampled from the training set, n ∼ 𝒩
(︀
0, 𝜎2I

)︀ is i.i.d. Gaussian
noise, and 𝐷𝜃 is a noise-conditioned neural network tasked with denoising the corrupted sample x0 + n. We
adhere to the preconditioning design introduced in EDM for parameterizing 𝐷𝜃. The overall training loss is
defined as a weighted expectation of ℒ(𝐷𝜃;𝜎) over the noise levels:

ℒ(𝐷𝜃) = E𝜎

[︂
𝜆(𝜎)

𝑒𝑢(𝜎)
ℒ(𝐷𝜃, 𝜎) + 𝑢(𝜎)

]︂
, (6)

𝜆(𝜎) =
(︀
𝜎2 + 𝜎2

data
)︀
/ (𝜎 · 𝜎data)

2, (7)
ln(𝜎) ∼ 𝒩

(︀
𝑃mean, 𝑃 2

std
)︀, (8)

where the distribution of noise levels 𝜎 is controlled by hyperparameters 𝑃mean and 𝑃std. 𝜎data is the standard
deviation of the training data, and the weighting function 𝜆(𝜎) ensures equal contribution of each noise level
at the beginning of the training. However, as training progresses, this balance may deteriorate. To mitigate
this issue, we treat the optimization over various noise levels as a form of multi-task learning. We utilize the
uncertainty-based weighting approach by introducing 𝑢(𝜎) as a continuous uncertainty function quantifying
the uncertainty for the denoising objective ℒ(𝐷𝜃, 𝜎) at noise level 𝜎. We use a simple MLP to parameterize
𝑢(𝜎) and minimize the overall loss ℒ(𝐷𝜃) during training. Intuitively, the contribution of loss at noise level 𝜎 is
weighted down if the model is uncertain about the task, i.e., if 𝑢(𝜎) is high. At the same time, the model is
penalized for this uncertainty, encouraging 𝑢(𝜎) to be as low as possible.

Compared to recent video generative models that adopt the Gaussian flow matching formulation (Kong et al.,
2024; Polyak et al., 2024), our work is derived from the diffusion score matching perspective (Ho et al., 2020;
Song et al., 2020). However, as shown by Gao et al. (2024), these frameworks are theoretically equivalent,
sharing fundamental similarities in their objectives and training procedures. Our EDM-based formulation aligns
with these insights, mainly differing in the choice of preconditioning designs and hyperparameters. In practice,
we have not encountered any performance limitations with the EDM formulation.
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5.1.2. Architecture
In this section, we describe the design of our denoiser network 𝐷𝜃 that builds upon DiT (Peebles and Xie,
2023), which was originally designed for label-conditioned image generation. We adapt its architecture to
better suit our goal of controllable video generation. We visualize the overall network design in Fig. 11.
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Figure 11: Overall architecture of Cosmos-1.0-Diffusion World Foundation Model. The model processes
an input video through the encoder of the Cosmos-1.0-Tokenizer-CV8x8x8 to obtain latent representations,
which are subsequently perturbed with Gaussian noise. These representations are then transformed using a
3D patchification process. In the latent space, the architecture applies repeated blocks of self-attention, cross-
attention (integrating input text), and feed-forward MLP layers, modulated by adaptive layer normalization
(scale, shift, gate) for a given time step 𝑡. The decoder of Cosmos-1.0-Tokenizer-CV8x8x8 reconstructs the final
video output from the refined latent representation.

3D patchification. The input to our network is a latent representation of shape 𝑇 × 𝐶 × 𝐻 × 𝑊 for both
image and video data, with images differentiated by a video with a single frame. To prepare inputs for our
denoiser network, we first “patchify” the state using a linear layer and subsequently flatten it. This process
involves projecting non-overlapping cubes of shape (𝑝𝑡, 𝑝ℎ, 𝑝𝑤) into individual token inputs for the network.
Consequently, after patchification, an image or video is reshaped into a one-dimensional, spatiotemporal
sequence of length 𝑇𝐻𝑊/(𝑝𝑡𝑝ℎ𝑝𝑤). We use 𝑝𝑡 = 1, 𝑝ℎ = 𝑝𝑤 = 2 for our denoiser network.

Hybrid positional embedding with FPS-aware 3D RoPE and learnable embedding. We employ a 3D-
factorized Rotary Position Embedding (RoPE) (Su et al., 2024) to allow the generation of arbitrary size, aspect
ratio, and video length. Specifically, we partition the feature dimension into three approximately equal chunks,
each applying RoPE with positional information along the temporal, height, and width axes, respectively. In
practice, this can be implemented efficiently without splitting and concatenation in each block by concatenating
frequency embeddings in their respective axes and reusing RoPE kernels optimized for Large Language Models
(LLMs). To further support video synthesis with varying frame rates, we rescale temporal frequencies based on
the training video’s Frames Per Second (FPS). Due to RoPE’s relative positional encoding property and our 3D
factorization design, the FPS-aware design is compatible with our joint image-video training. An additional
benefit of RoPE is evident during progressive training when we alter resolution or video length. By leveraging
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Neural Tangent Kernel (NTK)-RoPE (Peng and Quesnelle, 2023), we observe rapid model convergence, achieving
reasonable performance even within 5,000 training steps. Additionally, we find that adding an extra learnable
absolute positional embedding per transformer block can further enhance the model, reduce training loss, and
reduce morphing artifacts in generated videos.

Cross-attention for text conditioning. We rely on cross-attention layers in our network for incorporating
linguistic information. Each transformer block consists of sequential self-attention, cross-attention, and feed-
forward layers. While self-attention operates over spatiotemporal tokens, cross-attention integrates semantic
context using T5-XXL (Raffel et al., 2020) embeddings as keys and values, enabling effective text conditioning.

Query-key normalization. In the early stages of training, we observe instability in the growth of attention
logits, leading to a collapse of attention entropy. We follow existing literature (Dehghani et al., 2023; Esser
et al., 2024; Wortsman et al., 2023) to normalize query 𝑄 and key 𝐾 before the attention operation. We
use Root Mean Square Normalization (RMSNorm) (Zhang and Sennrich, 2019) with learnable scales for all
self-attention and cross-attention layers within our network.

AdaLN-LoRA. We find that DiT’s adaptive layer normalization (AdaLN) layers (Peebles and Xie, 2023; Xu
et al., 2019) account for a significant portion of the model parameters while contributing negligibly to the
computational complexity in terms of FLOPs. Inspired by W.A.L.T (Gupta et al., 2024), we implement Low-Rank
Adaptation (LoRA) (Hu et al., 2022) to decompose the dense linear projections in these layers into low-rank
approximations. For Cosmos-1.0-Diffusion-7B, this architectural optimization achieves a 36% reduction in
parameter count (from 11B to 7B parameters) while maintaining performance parity across all evaluation
metrics, demonstrating the effectiveness of our parameter-efficient design.

Table 11: Configuration details of Cosmos-1.0-Diffusion models.

Configuration 7B-Text2World 14B-Text2World 7B-Video2World 14B-Video2World

Number of Layers 28 36 28 36
Model Dimension 4,096 5,120 4,096 5,120
FFN Hidden Dimension 16,384 20,480 16,384 20,480
AdaLN-LoRA Dimension 256 256 256 256
Number of Attention Heads 32 40 32 40
Number of Key / Value Heads 32 40 32 40
MLP Activation GELU
Positional Embedding Hybrid positional embedding
Conditional Information Text; FPS Text; FPS Text; FPS; Frames Text; FPS; Frames
Base Learning Rate 2−15 2−16 2−15 2−16

Weight decay 0.1 0.2 0.1 0.2
Learning Rate Warmup Linear scheduler with 2,500 iterations
AdamW momentum and 𝜖 𝛽1, 𝛽2 = 0.9, 0.99; 𝜖 = 10−10

5.1.3. Training Strategy
This section outlines the methodologies employed to train our models on datasets spanning multiple modalities,
resolutions, aspect ratios, and conditioning inputs.

Joint image and video training. To leverage the vast abundance of high-quality, diverse image datasets in
model training, we implement an alternating optimization strategy that interleaves batches of image and
video data. To facilitate cross-modal knowledge transfer between image and video domains, we adopt a
domain-specific normalization scheme that aligns the latent distributions using sufficient statistics estimated
independently for image and video data. This approach is motivated by the observation that reducing the
distributional shift between image and video latent representations improves generation quality. Furthermore,
we observe non-stationary statistics across temporal and channel dimensions in video latent representations.
To address this heterogeneity, we employ a normalization strategy that applies frame-wise and channel-wise
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standardization to video latent representations, effectively encouraging them to better approximate an isotropic
Gaussian prior distribution.

Beyond cross-modality knowledge transfer, our normalization scheme provides an important theoretical benefit:
scale invariance in the signal-to-noise ratio during training. Consider two zero-mean latent representations
with different scales: one standardized to unit variance, and another with variance 4. When adding Gaussian
noise 𝒩 (0, 𝜎2) to achieve a desired signal-to-noise ratio for the standardized representation, we must scale
the noise to 𝒩 (0, 4𝜎2) for the unnormalized representation to maintain the same ratio. By standardizing all
latent representations, we ensure consistent signal-to-noise ratios across different scales, facilitating model
adaptation even when the underlying tokenizer is updated during training.

To maintain computational efficiency, we balance image and video batch sizes to ensure comparable memory
utilization across GPUs. However, we observe that the video batch denoising loss exhibits slower convergence
compared to the image batch loss. We attribute this to the inherent temporal redundancy in video frames,
which results in smaller gradient magnitudes for video batches. Drawing inspiration from recent advances in
multi-resolution image training (Atzmon et al., 2024; Chen, 2023; Hoogeboom et al., 2023), we address this
convergence discrepancy by scaling the video batch noise levels by the square root of the frame count relative
to image batch noise levels.

Table 12: Stages of progressive training and their specifications.

Stage Resolution Number of Frames Context Length FSDP Size CP Size

Low-resolution Pre-training 512p (640×512) 57 10,240 a 64 2
High-resolution Pre-training 720p (1280×704) 121 56,320 b 64 8
High-quality Fine-tuning 720p (1280×704) 121 56,320 b 64 8
a 10,240 (the context length) is computed as: 640 (width) ÷8 (tokenize) ÷2 (patchify) ×512 (height) ÷8 (tokenize)
÷2 (patchify) ×[(57− 1)÷ 8 + 1] (tokenize frames).
b 56,320 (the context length) is computed as: 1280 (width) ÷8 (tokenize) ÷2 (patchify) ×704 (height) ÷8 (tokenize)
÷2 (patchify) ×[(121− 1)÷ 8 + 1] (tokenize frames).

Progressive training. We adopt a progressive training strategy, with the specifics of each stage detailed
in Tab. 12. The initial stage involves training on videos and images at a resolution of 512 pixels, using videos
composed of 57 frames. Subsequently, we transition to the target resolution of 720 pixels, increasing the video
length to 121 frames. After pre-training on massive data, we fine-tune the model on a high-quality subset for
𝒪(10𝑘) iterations with a linearly decaying learning rate. Consistent with findings from Dai et al. (2023), we
also find that fine-tuning can improve the quality of the generated videos.

Multi-aspect training. To accommodate content with varying aspect ratios, we organize the data into five
distinct buckets corresponding to ratios of 1:1, 3:4, 4:3, 9:16, and 16:9, assigning each image or video to
the bucket with the closest aspect ratio. During training, each data parallel process group samples from one
bucket, allowing different buckets across different parallel process groups. We implement longest-side resizing
to maximally preserve the original content information described in the prompt. For batch processing, we
apply reflection padding to missing pixels and supply the padding mask to the diffusion backbone, enabling
precise control during inference.

Mixed-precision training. We maintain two copies of the model weights: one in BF16 and another in FP32.
During the forward and backward passes, the BF16 weights are used to improve training efficiency, resulting
in gradients and activations also in BF16 format. For parameter updates, the weights are updated in FP32
to ensure numerical stability. The updated FP32 parameters are then copied and cast to BF16 for the next
iteration. To further stabilize training, we scale the loss of denoising score matching in Eq. (5) by a factor of
10. We also find that lower betas and eps coefficients in AdamW significantly reduce loss spikes. For our 14B
diffusion model training, we rarely encountered loss spikes, and there were no non-recoverable loss spikes.
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Text conditioning. For our Text2World models, we employ T5-XXL (Raffel et al., 2020) as the text encoder. We
zero-pad T5 embeddings to maintain a fixed sequence length of 512. To enhance text-context alignment, we
adopt classifier-free guidance (Ho and Salimans, 2022). Unlike prior works (Balaji et al., 2022; Saharia et al.,
2022) that randomly zero out text embeddings, we omit this step due to the effectiveness of negative prompts
during inference. Notably, as a text-to-image generator, our model excels in generating high-fidelity images
even without guidance, a capability we attribute to the high-quality training dataset. While classifier-free
guidance typically promotes mode-seeking behavior for preferred visual content, we find that careful data
selection achieves a similar effect. However, for video generation, the lack of comparable high-quality data
leads to suboptimal results under low guidance settings. Consequently, higher guidance values are required to
produce satisfactory content in video-generation tasks.

Image and video conditioning. We extend our Text2World models to build Video2World models that support
image and video conditioning by incorporating previous frame(s) into the generation process. Specifically,
the conditional frame(s) are concatenated with the generated frames along the temporal dimension. To
improve robustness against variations in input frame(s) during inference, we introduce augmented noise to
the conditional frames during training. The sigma value for this augmented noise is sampled with 𝑃mean =

−3.0, 𝑃std = 2.0. Additionally, the input to the diffusion model is concatenated along the channel dimension
with a binary mask that distinguishes conditional frames from generated frames. The loss function excludes
contributions from the locations of conditional frames, focusing exclusively on the generated output. To improve
generalization, we randomly vary the number of conditional frames during training. During inference, the
model can flexibly operate with either a single conditional frame (image) or multiple previous frames as input.

5.1.4. Scaling Up
Here, we outline the techniques that enable efficient scaling of our diffusion WFMs. We analyze the memory
requirements of our models, discuss parallelism strategies, and compare our training setup against other video
diffusion models and state-of-the-art LLMs.

Memory requirements. The four major components that consume the GPU memory are:

• Model parameters: 10 bytes per parameter. Our mixed precision training stores model parameters in
both FP32 and BF16, alongside Exponential Moving Average (EMA) weights in FP32.

• Gradients: 2 bytes per parameter. We store the gradients in BF16.
• Optimizer states: 8 bytes per parameter. We use AdamW (Loshchilov and Hutter, 2019) as our optimizer

and store the optimizer states (i.e., first and second moments) in FP32.
• Activations: (2×number_of_layers×15×seq_len×batch_size×d_model) bytes. We store the activations

in BF16. Tab. 13 provides details of the stored activations for major operations within the network. To
optimize memory usage, we implement selective activation checkpointing (Chen et al., 2016; Korthikanti
et al., 2023), recomputing activations for memory-limited layers such as normalization functions.

For instance, our 14B model (Cosmos-1.0-Diffusion-14B-Text2World) requires approximately 280 GB for
model parameters, gradients, and optimizer states, alongside 310 GB for activations during high-resolution
pre-training. Given the 80GB HBM3 limit of NVIDIA H100 GPUs, we employ Fully Sharded Data Parallelism
(FSDP) and Context Parallelism (CP) to distribute memory demands across multiple GPUs.

Fully Sharded Data Parallelism (FSDP). FSDP improves memory efficiency by sharding model parameters,
gradients, and optimizer states across devices. It gathers parameters only when needed during computation
and releases them afterward. Unlike standard data parallelism, which duplicates parameters across devices,
FSDP distributes parameters, gradients, and optimizer states, with each device managing only its shard. This
approach minimizes memory usage to the largest temporarily unsharded parameter set alongside its shard of
parameters, gradients, and optimizer states. For our implementation, we utilize a sharding factor of 32 for the
7B model and 64 for the 14B model to balance memory and communication latency.
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Table 13: Cosmos-Diffusion transformer FLOPs and activation memory. The table provides the computational
cost (FLOPs) and activation memory requirements for each operation. For FLOPs, we use a factor of 2 to

describe the multiply accumulate cost. A “—” denotes cases where the value is either negligible due to its small
magnitude or omitted because activation checkpointing is employed to recompute values instead of storing

them, thus saving memory.

Layer Operation FLOPs Activations (Tensor Shape)

Self-attention

𝑄,𝐾, 𝑉 Projections 2× 3× seq_len× d_model2 seq_len× batch_size× d_model a

𝑄𝐾 Norm — 2× seq_len× batch_size× d_model b

𝐴 = 𝑄@𝐾𝑇 2× seq_len2 × d_model — c

𝐴′ = Softmax(𝐴) — — d

𝐴′@𝑉 2× seq_len2 × d_model seq_len× batch_size× d_model e

Final Projection 2× seq_len× d_model2 seq_len× batch_size× d_model

Cross-attention

𝑄,𝐾, 𝑉 Projections 2× seq_len× d_model2 seq_len× batch_size× d_model
𝑄𝐾 Norm — seq_len× batch_size× d_model f

𝐴 = 𝑄@𝐾𝑇 — — c

𝐴′ = Softmax(𝐴) — — d

𝐴′@𝑉 — — g

Final Projection 2× seq_len× d_model2 seq_len× batch_size× d_model

Feedforward
Up Projection 4× seq_len× d_model2 seq_len× batch_size× d_model

GELU — 4× seq_len× batch_size× d_model
Down Projection 4× seq_len× d_model2 — h

AdaLN
LayerNorm — seq_len× batch_size× d_model

Scale — — i

Shift — —
Gate — seq_len× batch_size× d_model

a The shared input is stored. b The query 𝑄 and key 𝐾 are stored. c The normalized query 𝑄 and key 𝐾 are
recomputed. d The attention scores (𝐴 = 𝑄@𝐾𝑇 ) are recomputed. e The value 𝑉 is stored. The normalized
attention weights (𝐴′ = Softmax(𝐴)) are recomputed. f In cross-attention, only query 𝑄 is counted; key 𝐾 has
much shorter sequence length and is thus negligible. g In cross-attention, the value 𝑉 has much shorter sequence
length and is thus negligible. h The input is recomputed from GELU. i The input is recomputed from LayerNorm.

Context Parallelism (CP). Scaling transformers for long-context settings introduces challenges with increased
FLOPs and activation memory. CP addresses these challenges by distributing computation and activations across
multiple GPUs. It works by splitting both the query𝑄 and the key-value (𝐾,𝑉 ) along their sequence dimensions
into CP_SIZE chunks, where CP_SIZE is the number of GPUs within a CP group. Each GPU processes one
chunk of 𝑄 and iteratively accumulates partial attention outputs using blocks of (𝐾,𝑉 ) stored in the same CP
group. Different implementations of CP utilize different communication primitives, including all-gather (Dubey
et al., 2024), P2P (Liu et al., 2023), and all-to-all (Jacobs et al., 2023). We employ the P2P variant from
TransformerEngine (NVIDIA, 2024), which overlaps computation and communication by transferring (𝐾,𝑉 )

blocks between GPUs while simultaneously processing attention. When block sizes are carefully chosen, this
overlap effectively hides data transfer latency. We organize CP groups within NVLink-connected GPUs and
overlap CP ranks with FSDP ranks for optimal utilization. For image iterations with shorter contexts, CP is
disabled to improve throughput. Cross-attention layers do not use CP due to the shorter sequence lengths of
(𝐾,𝑉 ), which results in insufficient computation to mask communication latency.

Using Cosmos-1.0-Diffusion-14B as an instance, employing FSDP with a sharding factor of 64 reduces memory
requirements for parameters, gradients, and optimizer states, bringing them down from 280 GB to approx-
imately 280 / 64 ≈ 4 GB per GPU. Similarly, employing CP with CP_SIZE = 8 decreases activation memory
from 310 GB to roughly 310 / 8 ≈ 40 GB per GPU. It is important to note that these calculations are underesti-
mations; in practice, additional memory is consumed by the tokenizer and unsharded parameters. Overlapping
communication and computation in CP also necessitates each GPU to retain multiple chunks of (𝐾,𝑉 ).
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Comparison with other video generative models. Our parallelism strategy is deliberately streamlined
compared to approaches outlined in HunyuanVideo (Kong et al., 2024) and MovieGen (Polyak et al., 2024),
which incorporate Tensor Parallelism (TP) and its extension, Sequence Parallelism (SP). Despite excluding
TP/SP, our setup achieves comparable Model FLOPs Utilization (MFU). While TP/SP remains valuable in certain
scenarios, such as larger models or alternative network topologies, a detailed analysis of tradeoffs is left for
future work.

Frame 0 Frame 29 Frame 59 Frame 89 Frame 120

7B
14

B

Prompt: Hands firmly grasp the handle of a steam iron, expertly gliding it over a wrinkled shirt. With each
pass, the iron releases gentle clouds of steam, effortlessly smoothing the fabric and erasing wrinkles to reveal a
crisp, neat finish. The iron moves with precision and care, transforming the shirt with each stroke. A subtle
scent of fresh linen permeates the air, adding to the serene ambiance. Soft light filters through a nearby
window, highlighting the fabric’s newly smooth texture and creating a tranquil atmosphere as this meticulous
task unfolds.

Figure 12: Generated videos from Cosmos-1.0-Diffusion-7B-Text2world and Cosmos-1.0-Diffusion-14B-
Text2world. Both the Text2World models produce videos of high visual quality, motion dynamics and text
alignment. Notably, compared to the 7B model, the 14B model demonstrates an enhanced ability to capture
finer visual details and more intricate motion patterns. To check full videos and more video examples, please
visit our website.

Comparison with large language models. Unlike LLMs, which are typically pre-trained with shorter context
lengths, long-context settings significantly increase FLOPs due to the quadratic cost of self-attention. While
FLOPs for LLMs are commonly calculated as 6× seq_len× 𝑃 , where 𝑃 is the number of parameters (Kaplan
et al., 2020), we note that this formula is inaccurate for our diffusion WFMs. We provide the forward pass
FLOPs of each key operation in Tab. 13.

5.1.5. Prompt Upsampler
During training, our WFMs use detailed video descriptions as input text prompts to produce high-quality videos.
However, during inference, user prompts may vary in length, structure, and style, often being much shorter. To
bridge this gap between training and inference text prompts, we develop a prompt upsampler to transform
original input prompts into more detailed and enriched versions. It can improve the prompts by adding more
details and maintaining a consistent description structure, which leads to higher quality output.

The main requirements for the prompt upsampler are:

• Fidelity to the input prompts: The upsampled prompt must faithfully preserve the key elements of the
original user input, including the main characters, actions or motions, key attributes, and overall intent.

• Alignment with training distribution: The upsampled prompt should closely resemble the distribution
of training prompts of WFMs in terms of length, language structure, and style.

• Enhanced visual details: The upsampled prompt should be designed to prompt the WFMs to generate
more accurate imagery.

Prompt upsampler for Text2World model. We fine-tune Mistral-NeMo-12B-Instruct (Mistral and NVIDIA,
2024) to build our prompt upsampler. To obtain paired data, that is, short prompts simulating user input and
the corresponding long prompts reflecting the distribution of training prompts, we use a VLM to generate short
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Condition frame 0 Frame 29 Frame 59 Frame 89 Frame 120

7B
14

B

Prompt: The video depicts a robotic arm holding a wine glass filled with red wine. The robotic arm, equipped
with multiple joints and mechanical components, appears to be designed for precision tasks. The glass is
held delicately, showcasing the robot’s capability to handle fragile objects. The background is minimalistic,
emphasizing the interaction between the robot and the wine glass.

Condition frame 0 Frame 150 Frame 300 Frame 450 Frame 680

7B
14

B

Prompt: The video depicts the interior of a large industrial facility, likely a factory or warehouse. The space is
expansive with high ceilings and metal framework. Overhead cranes and various machinery are visible, indicating
a setting for heavy manufacturing or assembly. The floor is mostly empty, with some scattered debris and
marked lines. Safety signs and barriers are present, emphasizing the industrial environment. The lighting is
natural, streaming through the high windows, illuminating the workspace.

Figure 13: Generated videos from Cosmos-1.0-Diffusion-7B-Video2world and Cosmos-1.0-Diffusion-14B-
Video2world. The top two rows show 5-second videos generated by the models, conditioned on the first 9
frames. The bottom two rows show long video generation results. We generate long videos in an autoregressive
manner, where the first generated video is conditioned on a single input image, and the subsequent five videos
are conditioned on their previous nine frames. Both of the 7B and 14B models produce photorealistic videos
with high visual fidelity. The 14B model demonstrates the ability to generate more complex scenes and exhibits
superior motion stability. To check full videos and more video examples, please visit our website.

captions based on our training long prompts and corresponding videos. This long-to-short data creation strategy
is effective in (1) preserving the authentic video content and distribution from detailed training prompts of
WFMs and (2) ensuring fidelity between the short and long prompts. The resulting prompt upsampler is
termed Cosmos-1.0-PromptUpsampler-12B-Text2World.

Prompt upsampler for Video2World model. For the Video2World model, the input consists of video conditions
and a user text prompt. To enhance the user prompt, we utilize an open-source VLM, Pixtral-12B (Agrawal
et al., 2024), combined with zero-shot prompt engineering, to upsample the prompt into a detailed description
that considers both the video conditions and the user prompt. We found the vanilla Pixtral-12B model works
well out of the box and did not proceed to perform a similar fine-tuning described above.

5.1.6. Results
In Fig. 12, we present qualitative results generated by our Cosmos-1.0-Diffusion-7B-Text2World and Cosmos-
1.0-Diffusion-14B-Text2World models. Both models produce videos of high visual quality, motion dynamics,
and text alignment. Compared to the 7B model, the 14B model is able to generate videos capturing more
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complex visual details and intricate motions.

We show generated videos from Video2World 7B and 14B models in Fig. 13. The Video2World models
support both image and video conditioning and can generate extended videos in an autoregressive manner. As
demonstrated in Fig. 13, our Video2World models produce photorealistic videos with good motion dynamics
and visual fidelity. The 14B model, again, generates better videos in terms of scene richness and motion
stability.

5.2. Autoregressive-based World Foundation Model
In autoregressive WFMs, we formulate world simulation generation as a next-token prediction task similar to
language modeling. We start by converting a video into a sequence of discrete video tokens 𝒱 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
using the Cosmos Discrete Tokenizer introduced in Sec. 4. Then we train a Transformer decoder (Vaswani et al.,
2017) to predict the next video token using past video tokens as context, similar to large language models
(LLMs) (Brown et al., 2020; Dubey et al., 2024; Jiang et al., 2023). Specifically, the training objective is to
minimize the following negative log-likelihood (NLL) loss:

ℒ𝑁𝐿𝐿 =
∑︁
𝑖

− log𝑃 (𝑣𝑖|𝑣1, 𝑣2, . . . , 𝑣𝑖−1; Θ), (9)

where the conditional probability 𝑃 of the predicted next video token 𝑣𝑖 is modeled by a Transformer decoder
with parameters Θ.

5.2.1. Architecture
Our autoregressive-based WFM architecture is illustrated in Fig. 14. We make several modifications to
the standard transformer model architecture tailored for our video generation task, including adding 1)
3D-aware positional embeddings, 2) cross-attention to enable textual inputs for better control, and 3) QK-
Normalization (Wortsman et al., 2023).

3D positional embeddings. Similar to our diffusion-based WFM (Sec. 5.1.2), we incorporate two complemen-
tary positional embedding mechanisms: 3D factorized Rotary Position Embedding (RoPE) for relative positions
and 3D factorized absolute positional embedding (APE) for absolute coordinates. These mechanisms work in
concert to provide comprehensive spatial and temporal information throughout the network.

• 3D Rotary Position Embedding (RoPE). We apply 3D RoPE to our model to encode relative positional
information across the temporal, height, and width dimensions. During training, we adopt a multi-stage
training strategy in which the sequence length of videos increases as the training progresses. To adapt
the 3D RoPE to the changing temporal duration, we use YaRN (Peng et al., 2023), a compute-efficient
technique designed to extend the context window of RoPE. We apply YaRN extension only along the
temporal axis as the video sequence length increases only along the temporal dimension. By utilizing
YaRN, our model can extrapolate to context lengths longer than those encountered during the initial
stages of training.

• 3D Absolute Positional Embedding (APE). In addition to 3D RoPE, we incorporate a 3D APE within
each transformer block to complement the relative positional encoding. This APE encodes positional
information using sinusoidal embeddings factorized across temporal, height, and width dimensions,
ensuring the model is aware of absolute positions. The embedding is added directly to the input tensor
at each stage, enriching the positional context for the transformer. We find combining absolute and
relative positional encodings enhances model performance, reduces training loss, and minimizes morphing
artifacts in generated videos. Notably, while our diffusion-based WFM (Sec. 5.1.2) employs learnable
embeddings, we adopt sinusoidal-based embeddings for APE in our autoregressive-based WFM.

Vocabulary. Tokenization is a crucial step that turns input text into a sequence of discrete tokens in large
language models (LLMs). In LLMs, the vocabulary of possible tokens is determined by the LLM’s tokenizer
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Figure 14: Architecture of Cosmos-1.0-Autoregressive-Video2World Model. The pipeline begins by encoding
input video through the encoder of Cosmos-1.0-Tokenizer-DV8x16x16 to generate discrete tokens, which are
transformed into learned embeddings. These embeddings are processed through repeated transformer blocks,
each consisting of absolute positional embedding and 3D RoPE components that are flattened before entering
the self-attention module. Each block also includes a cross-attention module that incorporates encoded text
prompts (processed via a T5 text encoder), followed by a two-layer MLP. Finally, the decoder of Cosmos-1.0-
Tokenizer-DV8x16x16 reconstructs the video from the output tokens.

(e.g., tiktoken introduced by OpenAI (2022)) trained on a large corpus of text with algorithms such as Byte
Pair Encoding (BPE) (Gage, 1994).

For our autoregressive models, we use our Cosmos-1.0-Tokenizer-DV8x16x16 as the tokenizer. As introduced in
Sec. 4, we leverage the Finite-Scalar-Quantization (FSQ) (Mentzer et al., 2023) to quantize the 6-dimensional
latent space into (8, 8, 8, 5, 5, 5) levels. This quantization leads to a vocabulary size of 8×8×8×5×5×5 = 64,000.

Cross-attention for text conditioning. In addition to the self-attention blocks present in the transformer
architecture, we add cross-attention layers to enable the model to condition on input text. Similar to diffusion-
based WFM(Sec. 5.1.2), cross-attention is applied between the features of the transformer model and text
embeddings obtained from a pre-trained text encoder (T5-XXL). In our experiments, we add cross-attention
blocks after every self-attention layer.

Query-key normalization. In order to enhance training stability, we incorporate Query-Key Normalization
(QKNorm) (Wortsman et al., 2023). QKNorm addresses instability in attention mechanisms by normalizing the
query (𝑄) and key (𝐾) vectors before computing their dot product, thereby preventing the softmax function
from saturating and ensuring more effective learning. After normalization, the dot product is scaled by a
learnable parameter 𝛾 instead of the fixed 1/

√
𝑑𝑘. This learnable scaling factor allows the model to adaptively

control the magnitude of the attention scores, enhancing flexibility and expressivity.

Z-loss. To further improve training stability, we introduce a stabilization term known as the z-loss (de Brébisson
and Vincent, 2016) into our training objective. The z-loss penalizes deviations of the logits from zero, effectively
discouraging the model from generating excessively large logit values that could result in numerical instability
or gradient explosions. The z-loss is defined as the sum of the squared logits as ℒz-loss = 𝜆 ·

∑︀
𝑖 𝑧

2
𝑖 . We found

z-loss to be critical in maintaining gradient norms to a healthy range, especially when scaling the training to a
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large number of GPU nodes. Empirically, we found that the z-loss coefficient 𝜆 = 3× 10−4 strikes an optimal
balance, effectively stabilizing training without adversely affecting model performance.

5.2.2. Scaling Up
This section describes the techniques that enable efficient scaling of our autoregressive WFMs. We briefly
analyze the memory consumption of our models, discuss parallelism strategies, and compare our training setup
with other autoregressive models.

Memory requirements. During training, GPU memory is mainly consumed by:

• Model parameters: 6 bytes per parameter. We store the model parameters in both BF16 and FP32.
• Gradients: 2 bytes per parameter. We store the gradients in BF16.
• Optimizer states: 8 bytes per parameter. We store the first and second moments of AdamW (Loshchilov

and Hutter, 2019) both in FP32.
• Activations: Approximately (2× number_of_layers× 17× seq_len× batch_size× d_model) bytes. We

refer readers to Korthikanti et al. (2023) for a detailed analysis of activation memory of state-of-the-art
autoregressive models.

For instance, our 12B model (Cosmos-1.0-Autoregressive-12B) demands approximately 192 GB of memory
for its parameters, gradients, and optimizer states combined. As this is beyond a single NVIDIA H100 GPU’s
80GB HBM3 capacity, we leverage tensor parallelism (TP) (Shoeybi et al., 2019) and its extension, sequence
parallelism (SP) (Korthikanti et al., 2023), to distribute the memory requirements and computation across
multiple GPUs.

Tensor Parallelism (TP). Tensor Parallelism (TP) (Shoeybi et al., 2019) splits the weights of linear layers
along either the input or output feature dimensions, with the choice guided by the goal of minimizing inter-
GPU communication. For example, in a two-layer feedforward network, the weights of the first layer are
partitioned along the output feature dimension, while those of the second layer are partitioned along the input
feature dimension. This arrangement allows intermediate activations to be processed locally without requiring
communication between GPUs. The final outputs are then combined using all-reduce communication. By
employing TP, each GPU stores only a fraction, specifically 1/TP_SIZE, of the weights for linear layers. However,
the default implementation of TP still replicates activations along the sequence dimension for operations like
LayerNorm, resulting in redundancy.

Sequence Parallelism (SP). SP (Korthikanti et al., 2023) extends Tensor Parallelism by further partitioning
the context along the sequence dimension. This approach is applicable to operators, such as LayerNorm and
Dropout in self-attention layers, where each element in the sequence can be processed independently. With SP
enabled. Each GPU stores only a fraction, specifically 1 / TP_SIZE, of the activations.

Comparison with other autoregressive models. Compared to popular LLMs, our model doesn’t leverage
memory-saving attention variants such as MQA or GQA. Otherwise, our autoregressive model is deliberately
designed to closely resemble the architecture of LLMs (Adler et al., 2024; Brown et al., 2020; Dubey et al.,
2024; Jiang et al., 2023; Team, 2024; Yang et al., 2024), as this alignment offers flexibility and scalability.
Experiments that leverage more parallelisms, such as context parallelism and pipeline parallelism, to further
scale up the model sizes and context lengths are left for future works.

5.2.3. Training Strategy
We perform pre-training of our autoregressive WFMs in multiple stages.

• Stage 1: In the first stage, the model is trained using the video prediction objective. Given the first frame
as the input condition, the model is trained to predict future video frames. A context length of 17 frames
is used for this task, i.e., the model predicts 16 future frames with the first frame as input.
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• Stage 1.1: This stage performs video prediction but with an increased context length of 34 frames. We
use the YaRN extension on the temporal dimension to increase the context length of RoPE.

• Stage 2: In stage 2 of our training, we introduce text conditioning to our model. Text embeddings are
incorporated using newly initialized cross-attention layers. The model is trained with a 34-frame context.
To improve text-to-video generation ability, the model is trained using joint image and video data as
described in Sec. 5.1.3. When image batches are used, we use a larger batch size as the context length
for images is much smaller than that of videos.

All our models are trained with a fixed spatial resolution of 640× 1024.

Cooling down. After pre-training, we conduct a “cooling-down” phase with high-quality data, similar to LLM
training practices (Dubey et al., 2024). During this phase, we linearly decay the learning rate to 0 while training
on high-quality image-video pairs. The cooling-down phase is carried out over 30,000 iterations.

Table 14: Configuration details of Cosmos-1.0-Autoregressive models.

Configuration 4B 5B-Video2World 12B 13B-Video2World

Number of Layers 16 16 40 40
Model Dimension 4,096 4,096 5,120 5,120
Cross Attention Layers ✗ ✓ ✗ ✓

Base Learning Rate 1× 10−3 3× 10−4 1× 10−3 5× 10−4

Weight Decay 0.01
Learning Rate Warmup Linear scheduler with 5,000 iterations
Activation Function SwiGLU
FFN Hidden Dimension 14,336
Number of Attention Heads 32
Number of Key / Value Heads 8
Number of Tokens 12,800
Vocabulary Size 64,000
Positional Embedding 3D RoPE (𝜃 = 500,000) + 3D APE

We train two sets of autoregressive-based WFMs. We start by building two base models: one with a 4B capacity
and the other with a 12B capacity. These are pure next-video token predictors that do not take text prompts
as input. We then derive a Video2World version from each of the base models, where we add cross-attention
layers to them to leverage text prompt inputs for next video token prediction.

• Cosmos-1.0-Autoregressive-4B: a 4B transformer model for next video token prediction. This model is
trained using stage 1 and stage 1.1 of the multi-stage training objective.

• Cosmos-1.0-Autoregressive-5B-Video2World: a 5B transformer model derived from our Cosmos-1.0-
Autoregressive-4B and trained additionally with stage 2 of the multi-stage training objective.

• Cosmos-1.0-Autoregressive-12B: a 12B transformer model for next video token prediction. This model
is trained using stage 1 and stage 1.1 of the multi-stage training objective.

• Cosmos-1.0-Autoregressive-13B-Video2World: a 13B transformer model derived from Cosmos-1.0-
Autoregressive-12B and trained additionally with stage 2 of the multi-stage training objective.

5.2.4. Inference Optimization Towards Real-Time Generation
Our Cosmos Autoregressive WFMs share architectural similarities with LLMs, enabling us to leverage established
LLM inference optimization techniques to address the sequential decoding bottleneck. We implement a
combination of key-value caching, tensor parallelism, and torch.compile, following the gpt-fast3 implementation
in PyTorch (Paszke et al., 2019).

Speculative decoding. To further accelerate our autoregressive WFMs, we apply the Medusa speculative
decoding framework (Cai et al., 2024). Unlike common speculative decoding approaches that require a separate

3https://github.com/pytorch-labs/gpt-fast
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draft model (Leviathan et al., 2023) or training-free methods with limited speedup (Teng et al., 2024), Medusa
extends the transformer backbone with extra decoding heads to predict multiple subsequent tokens in parallel.
It then verifies these speculated tokens with rejection sampling. The inference is thus accelerated by alleviating
the bottleneck of one-token-at-a-time processing. We demonstrate the potential of the Medusa technique in
visual autoregressive acceleration without compromising the quality of generated outputs.

In our implementation, we fine-tune our pre-trained autoregressive WFMs by introducing Medusa heads into
the architecture. These heads are strategically inserted after the last transformer hidden states, where all
backbone parameters and the final unembedding layer are shared across different heads. Each Medusa head
is a single-layer FFN with SiLU activation and residual connection. We further merge the weight matrices of
multiple Medusa heads into a unified FFN to maximize parallelism during token prediction. Note that we do
not use the tree-based attention mechanism from Cai et al. (2024).

To investigate the optimal Medusa setup for our autoregressive WFMs, we conduct an in-depth study from
two aspects: (1) which transformer layers to fine-tune and (2) how many Medusa heads to add. For the first
problem, we compare between full fine-tuning and selective layer freezing. We observe that only fine-tuning
the Medusa heads gives poor multi-token prediction, while full fine-tuning incurs quality degradation. We
empirically identify that unfreezing the last two transformer layers and the final unembedding layer while
keeping the backbone frozen yields the best performance. This strategy ensures our Medusa training achieves
decent speculative decoding accuracy without suffering from catastrophic forgetting.

Table 15: Impact of Medusa head number on average token throughput and number of forward passes.
The experiments are conducted on 8 × H100 GPUs and 50 unseen test videos of 640× 1024 resolution.

Model Medusa Head Number 0 3 6 9 12

4B Token Throughput (tokens/s) 444.95 663.51 829.59 894.67 890.64
# of Forward Passes 7680 2860 2073 1812 1682

5B Token Throughput (tokens/s) 303.61 659.94 758.58 982.77 978.80
# of Forward Passes 10240 2857 2382 1799 1673

To explore the optimal number of Medusa heads, we calculate the model token throughput and forward pass
count with different numbers of Medusa heads. The ablation studies are conducted on 8 × H100 GPUs and
evaluated on 50 unseen test videos of 640× 1024 resolution. The results in Tab. 15 suggest that our Medusa
framework can effectively accelerate inference, with up to 2.0× token throughput and 4.6× less forward pass
for the 4B model, and up to 3.2× token throughput and 6.1× less forward pass for the 5B model. We show that
though more Medusa heads can reduce the number of forward passes needed to generate, it may slow down
the overall token throughput. We find that 9 Medusa heads yield the best trade-off between computational
efficiency and model performance.

In Tab. 16, we show performance analysis of autoregressive WFMs with Medusa integration. This analysis was
conducted on H100 GPUs and evaluated on test videos of 640× 1024 resolution in the BF16 precision. Results
show that the Medusa implementation consistently accelerates inference for both 4B and 5B models under
different GPU configurations.

Low-resolution adaptation for real-time inference. We pursue real-time inference by adapting our model to
a lower spatial resolution of 320×512, which results in a lower number of tokens per video. Specifically, we first
fine-tune the discrete video tokenizer (Cosmos-1.0-Tokenizer-DV8×16×16 in Sec. 4) on 320p low-resolution
videos using videos from the target Physical AI domain. Then, we fine-tune our autoregressive WFM that is
pre-trained in 640 × 1024 resolution (Cosmos-1.0-Autoregressive-4B in Sec. 5.2.3) with this low-resolution
tokenizer on videos of 320× 512 resolution from the target Physical AI domain. Finally, we add the Medusa
heads to the fine-tuned low-resolution autoregressive WFM.
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Table 16: Performance analysis of Cosmos Autoregressive Models on test videos of 640× 1024 resolution.

Model GPU No DD (s) No DD+Medusa (s) With DD (s) With DD+Medusa (s) VRAM (GB)

1 31.04 23.52 61.49 53.08 29
4B 4 18.20 13.87 29.60 25.63 31

8 17.62 9.91 30.30 22.83 34
1 39.68 24.97 70.39 54.72 59

5B 4 25.59 20.96 37.29 33.35 51
8 25.70 11.67 38.41 24.35 49
1 84.78 — 116.66 — 45

12B 4 47.49 — 60.27 — 36
8 45.69 — 58.81 — 37
1 109.18 — 140.24 — 77

13B 4 67.80 — 80.76 — 55
8 67.22 — 80.93 — 55

The table reports the average inference time (in seconds) and VRAM utilization of various Cosmos Autoregressive
WFMs under different settings. Inference time is reported for generating 32 frames with a single conditioning frame
as input. No DD: Time without diffusion decoder. No DD+Medusa: Time without diffusion decoder but with Medusa
heads. With DD: Time with diffusion decoder. With DD+Medusa: Time with diffusion decoder and Medusa heads.
VRAM: Video RAM usage in gigabytes.

Table 17: Decoding throughput of Cosmos-1.0-Autoregressive-4B with low-resolution adaptation, benchmarked
on 8 × H100 80GB GPUs using 10-FPS videos of 320× 512 resolution from the Physical AI domain.

Model (320× 512) Token Throughput (tokens/s) Video Throughput (frames/s)

Cosmos-1.0-Autoregressive-4B (with Medusa) 806.61 10.08

We conducted inference benchmarking on 8 × H100 GPUs using torch.compile’s “max-autotune” mode in BF16
precision, and evaluated with 10-FPS input videos from the target Physical AI domain. In Tab. 17, we report the
average token throughput and frame generation speed achieved in this setup. We observe that our model can
generate 10 video frames in less than 1 second, demonstrating that we can achieve real-time video generation
at 10 FPS.

5.2.5. Diffusion Decoder
Our Cosmos tokenizer uses a lightweight encoder-decoder architecture to perform aggressive compression,
which reduces the number of tokens for our WFM training. As a result of aggressive compression, it could
sometimes lead to blurriness and visible artifacts in video generation, especially in the autoregressive WFM
setting, where only a few integers are used to represent a rich video through discrete tokenization. We resort
to the diffusion decoder design (OpenAI, 2024; Ramesh et al., 2022) to address the limitation. Specifically, we
build a more powerful tokenizer decoder by fine-tuning Cosmos-1.0-Diffusion-7B-Text2Video in Sec. 5.1.

Fig. 15 illustrates how we train a diffusion decoder for our autoregressive WFMs. For each training video, we
use Cosmos-1.0-Tokenizer-CV8x8x8 and Cosmos-1.0-Tokenizer-DV8x16x16 to compute a continuous token
video and a corresponding discrete token video, respectively. We note that Cosmos-1.0-Tokenizer-CV8x8x8
can produce higher quality video outputs than Cosmos-1.0-Tokenizer-DV8x16x16 thanks to the more gentle
continuous tokenization process and the less aggressive compression scheme (8× 8× 8 instead of 8× 16× 16).

The discrete token video is treated as the conditional input to the denoiser of the Cosmos-1.0-Diffusion-7B
model. To compute the conditional input, we first embed each discrete token of the discrete token video into a
16-dimensional vector based on a learnable vocabulary embedding layer. We then upsample the embedding 2×
along the 𝑥 and 𝑦 directions so that the conditional input will be of the same size as the noisy input to the
denoiser from the continuous token video. We concatenate the noisy continuous inputs with the conditional
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Figure 15: Cosmos diffusion decoder training. During training, each input video is tokenized twice: one
through the target discrete tokenizer (DV8x16x16) and the other through a less-constrained continuous
tokenizer (CV8x8x8). The discrete token video is used as the conditional input to the diffusion denoiser.
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Figure 16: Cosmos diffusion decoder inference. During inference, the output video token from a Cosmos-1.0-
Autoregressive model is conditionally inputted to the denoiser.

inputs along the channel dimension, which becomes the input to the diffusion denoiser. The first layer of the
denoiser is channel-dimension expanded to accommodate the new input shape. We fine-tune the updated
Cosmos-1.0-Diffusion-7B by removing the added noise. As the discrete token video is not noise-corrupted,
the denoiser learns to leverage the residing information in the conditional input for denoising. The result is a
higher-quality decoder for the tokenizer that decodes the discrete token by solving a reserve diffusion problem.

Fig. 16 illustrates the inference. The output discrete token video (under 8× 16× 16 discrete compression) from
our autoregressive WFM is decoded into a video through two steps. First, we roll out the conditional denoiser
to generate a continuous token video (under 8× 8× 8 continuous compression) based on the autoregressive
WFM output. Next, the continuous token video is decoded by Cosmos-1.0-Tokenizer-CV8x8x8 to produce the
resulting RGB video.

5.2.6. Results
In Fig. 17, we show qualitative results of our autoregressive WFMs using different model sizes. In the
unprompted setting, comparing Cosmos-1.0-Autoregressive-4B and Cosmos-1.0-Autoregressive-12B model,
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Condition frame 0 Frame 10 Frame 20 Frame 30

4B
12

B

Prompt: None.

5B
13

B

Prompt: The video of a car moving forward, passing under a large overpass. The road is clear, and there are a
few other cars visible in the distance. The weather appears to be sunny, and the time of day is daytime. The
scene is set on a busy highway with concrete structures and greenery on the sides.

Figure 17: Generated videos from Cosmos Autoregressive World Foundation Models. The top two rows are
the video generation results with 4B and 12B models, while the bottom two rows are the Video2World results
with a text prompt. We observe that the 12B and 13B models shows sharper videos and better motion than 4B
and 5B models in both prompted and unprompted settings. To check full videos and more video examples,
please visit our website.

we observe that the 12B model generates videos with better motion and sharper details. Similarly, in the
prompted setting, comparing Cosmos-1.0-Autoregressive-5B-Video2World and Cosmos-1.0-Autoregressive-13B-
Video2World reveals that the 13B model gets better motion than the 5B model.

In Fig. 18, we show the enhancements obtained when using the diffusion decoder. The outputs of the
autoregressive model are blurry mainly due to the lossy compression in our discrete tokenizer. The use of the
diffusion decoder can enhance details while preserving the content.

We empirically find the outputs of the autoregressive-based Text2World WFMs do not improve with upsampled
prompts from the prompt upsampler discussed in Sec. 5.1.5. We hypothesize this is possibly due to the fact
that these WFMs are pretrained with pure video generation tasks for most of the training. They are not forced
hard enough to leverage text inputs.

5.2.7. Limitations
One notable failure case observed in the generated videos of our autoregressive WFMs is objects unexpectedly
appearing from below. Fig. 19 illustrates an example of this issue. To understand the failure rate of our models,
we conduct a systematic study by creating an evaluation set of 100 Physical AI inputs to our autoregressive
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Output of Cosmos-1.0-Autoregressive-13B-Video2World

Output of Cosmos-1.0-Autoregressive-13B-Video2World + diffusion decoder

Figure 18: Diffusion decoder comparison. In the top panel, we show the video generation results with Cosmos-
1.0-Autoregressive-13B-Video2World model. In the bottom panel, we show the enhanced video after the output
from the autoregressive model is passed through the diffusion decoder. We observe that the autoregressive
model alone produces blurry results, while the diffusion decoder can enhance the sharpness of videos while
preserving the content.

Condition frame 0 Frame 10 Frame 20 Frame 30

Output of Cosmos-1.0-Autoregressive-4B

Figure 19: Failure cases of Cosmos Autogressive WFMs. We observe failure cases in generated videos in
which some objects (shown in red) unexpectedly appear from below.

WFMs. We generate videos with all our models using two input modes—image (single-frame) conditioning
and video (9-frame) conditioning. For all generated videos, we manually inspect the failure cases and report
the failure rate in Tab. 18. We observe that the smaller models Cosmos-1.0-Autoregressive-4B and Cosmos-1.0-
Autoregressive-5B-Video2World show a higher corruption rate in single frame conditioning, while the larger
models Cosmos-1.0-Autoregressive-12B and Cosmos-1.0-Autoregressive-13B-Video2World are more robust.
Generation with 9-frame video conditioning is stable for all models, with a failure rate lower than 2%.

5.3. Evaluation
Pre-trained WFMs are generalists of visual world simulation. Their capabilities should be measured across
multiple aspects. Here, we evaluate our models on two aspects. First, we evaluate the 3D consistency of the
generated videos. An ideal WFM should generate video simulations from geometrically plausible 3D worlds.
Second, we evaluate the physics alignment of the generated videos. We calculate how well the rendered
dynamics adhere to the laws of physics. Evaluation of WFMs is a highly nontrivial task. We acknowledge that
there are several other important aspects required for evaluation. We leave a more comprehensive evaluation
as future work.

5.3.1. 3D Consistency
WFMs are designed to simulate 3D worlds through video generation, and it is essential to evaluate how well
the generated videos are consistent with the 3D structure of the visual world. In addition to appearing realistic,
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Table 18: Failure rate analysis of Cosmos Autoregressive models.

Model Image Conditioning Video Conditioning (9 frames)

Cosmos-1.0-Autoregressive-4B 15% 1%
Cosmos-1.0-Autoregressive-5B-Video2World 7% 2%

Cosmos-1.0-Autoregressive-12B 2% 1%
Cosmos-1.0-Autoregressive-13B-Video2World 3% 0%

the generated videos should maintain coherence with the physical principles of scenes through time, a key
requirement for downstream Physical AI applications.

Test data and baseline model. We focus on the scenario of static scenes in order to effectively measure 3D
consistency of videos with existing tools based on multi-view geometry. We curate a dataset of 500 videos
randomly chosen from the test set of the RealEstate10K dataset (Zhou et al., 2018). We additionally caption
the videos using a proprietary VLM to obtain text prompts that describe the videos as static scenes, so one does
not need to consider scene motions for metric computation. We compare against VideoLDM (Blattmann et al.,
2023) as the baseline method.

Metrics. Generated videos are effectively 2D projections of the underlying 3D visual worlds. We design the
following metrics to measure the 3D consistency of generated videos.

1. Geometric consistency. We evaluate the 3D consistency of our generated worlds by quantifying how the
epipolar geometry constraints are satisfied, including the Sampson error (Hartley and Zisserman, 2003;
Sampson, 1982) and the success rate of camera pose estimation algorithms (Schönberger et al., 2016;
Schönberger and Frahm, 2016) on the generated videos.

2. View synthesis consistency. We evaluate the ability of world foundation models to synthesize images at
interpolated novel viewpoints while maintaining coherence with the underlying 3D structure.

The Sampson error is the first-order approximation of the distance from one interest point to its corresponding
epipolar line in another view. Given 𝑁 point correspondences (represented in homogeneous coordinates)
{(x̄𝑖, ȳ𝑖)}𝑁𝑖=1 in a given frame pair, we define the Sampson error as

𝜖samp =
1

𝑁

𝑁∑︁
𝑖=1

|ȳ⊤
𝑖 Fx̄𝑖|√︁

‖SFx̄𝑖‖22 + ‖SF⊤ȳ𝑖‖22
, where S =

⎡⎢⎣1 0 0

0 1 0

0 0 0

⎤⎥⎦ , (10)

and F is the fundamental matrix estimated from the correspondences. We use the square root version of the
error function to make the metric more intuitive in pixel units. We use a combination of SuperPoint (DeTone
et al., 2018) and LightGlue (Lindenberger et al., 2023) to detect and match keypoint correspondences from a
frame pair and estimate F using OpenCV’s 8-point RANSAC algorithm. We normalize the average error by the
diagonal length of the frame with respect to a 960× 540 canvas.

We also evaluate 3D consistency of a generated video with its ability to self-synthesize novel viewpoints.
Following the common practice of novel view synthesis literature (Mildenhall et al., 2020), we hold out every
8 frames as the test frames and fit a 3D Gaussian splatting model (Kerbl et al., 2023) with the rest of the
training frames using the default settings from the Nerfstudio library (Tancik et al., 2023). We report the Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and LPIPS (Zhang et al., 2018) as the metrics to
quantify the quality of the synthesized test views.

Results. We present the quantitative evaluation results in Tab. 19. The Cosmos WFMs achieve significantly
better 3D consistency than our baseline model in terms of both geometric and view synthesis consistency.
Not only are the interest points from Cosmos WFMs more 3D-consistent, but the camera pose estimation
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Table 19: Evaluation of 3D consistency on base Cosmos models.
Geometric Consistency View Synthesis Consistency

Sampson error ↓ Pose estimation PSNR ↑ SSIM ↑ LPIPS ↓Method success rate (%) ↑
VideoLDM (Blattmann et al., 2023) 0.841 4.4% 26.23 0.783 0.135

Cosmos-1.0-Diffusion-7B-Text2World 0.355 62.6% 33.02 0.939 0.070
Cosmos-1.0-Diffusion-7B-Video2World 0.473 68.4% 30.66 0.929 0.085

Cosmos-1.0-Autoregressive-4B 0.433 35.6% 32.56 0.933 0.090
Cosmos-1.0-Autoregressive-5B-Video2World 0.392 27.0% 32.18 0.931 0.090

Real Videos (Reference) 0.431 56.4% 35.38 0.962 0.054

success rate is also notably higher, reflecting both improved overall quality and enhanced 3D consistency, even
reaching the level of real-world videos. Among the cases where camera poses were successfully estimated,
the synthesized held-out views demonstrate higher quality across all image synthesis metrics. These results
highlight the capability of our Cosmos WFMs to generate 3D-consistent videos, establishing them as effective
world simulators.

5.3.2. Physics Alignment
An ideal WFM should exhibit a strong understanding of the laws of physics and produce future observations
that respect them. While our pre-trained WFMs exhibit a certain level of physics understanding and advance
the state-of-the-art, one can still easily generate examples that do not obey the law of physics. We believe
additional steps in data curation where physically implausible videos are removed are required, as well as
improved model design. While we leave a strong physics-aligned WFM as future work, we are still interested in
measuring how much intuitive physics naturally emerges from large-scale data-driven pre-training.

To explore this, we design a controlled benchmark dataset using a physics simulation engine, taking inspiration
from (Kang et al., 2024). We generate physics-grounded simulations to test the adherence of our pre-trained
WFMs to Newtonian physics and rigid body dynamics. Specifically, we use simulation to generate physically
correct photorealistic videos of test scenarios specific to physical laws of interest. These reference “ground truth”
videos are then compared with “predicted” videos produced by a WFM given shared context (past observations
and perturbation).

Synthetic data generation. Using PhysX (NVIDIA, 2024) and Isaac Sim (NVIDIA, 2024), we design eight 3D
scenarios aimed at evaluating different physical effects:

1. Free-falling object(s): objects dropping on a plane (gravity, collision, etc.)
2. Tilted planar slope: objects rolling down an incline (gravity, moment of inertia, etc.)
3. U-shaped slope: objects rolling down a U-shaped slope (potential, kinetic energy, etc.)
4. Stable stack: a stack of objects in equilibrium (balanced forces)
5. Unstable stack: a stack of objects in imbalance (gravity, collision, etc.)
6. Dominoes: sequence of rectangular bricks falling in sequence (transfer of momentum, collision, etc.)
7. Seesaw: objects on either side of a seesaw (torque, rotational inertia, etc.)
8. Gyroscope: a spinning top on a flat surface (angular momentum, precession, etc.)

For each scenario, we randomize the number and type of dynamic objects (varying sizes, textures, shapes),
selecting from Omniverse assets (NVIDIA, 2024), as well as the background appearance. We simulate the
kinematic state of objects over time and render the output videos from 4 different static camera views. In total,
we render 800 1080p videos of 100 frames in length. The objects in each simulation roll-out are positioned so
that they are all visible from the first frame to avoid any existence ambiguity.

Metrics. We are interested in assessing the adherence to physical laws by comparing the simulated ground-truth
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Figure 20: Physics-scenario rollouts in simulation vs. pre-trained WFM. We demonstrate three exemplar
scenarios of increasing complexity as obtained from the reference (physically correct) simulation (first row in
each group) and Cosmos-1.0-Diffusion-7B-Video2World rollouts (second row in each group). We condition the
WFM on 9 frames and a prompt focusing on the kinematic state of the simulated objects. We show one tracked
object (blue bounding box and mask) per example used to compute our object-level metrics (average IOU).
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Table 20: Physics alignment results. We compare different variants of Cosmos WFMs in terms of accurate
future prediction of a physical scenario using the pixel-level, feature-level, and object-level metrics. Metrics are
calculated over 33 frames, the maximum length supported by the autoregressive variants of the Cosmos WFMs.

Pixel-level Feature-level Object-level
Model Condition(s) PSNR ↑ SSIM ↑ DreamSim ↑ Avg. IoU ↑

Cosmos-1.0-Diffusion-7B-Video2World prompt + 1 frame 17.34 0.538 0.836 0.332
Cosmos-1.0-Diffusion-7B-Video2World prompt + 9 frames 21.06 0.691 0.859 0.592

Cosmos-1.0-Diffusion-14B-Video2World prompt + 1 frame 16.81 0.521 0.836 0.338
Cosmos-1.0-Diffusion-14B-Video2World prompt + 9 frames 20.21 0.635 0.860 0.598

Cosmos-1.0-Autoregressive-4B 1 frame 17.91 0.486 0.827 0.394
Cosmos-1.0-Autoregressive-4B 9 frames 18.13 0.482 0.859 0.481

Cosmos-1.0-Autoregressive-5B-Video2World prompt + 1 frame 17.67 0.478 0.818 0.376
Cosmos-1.0-Autoregressive-5B-Video2World prompt + 9 frames 18.29 0.481 0.864 0.481

Cosmos-1.0-Autoregressive-12B 1 frame 17.94 0.486 0.829 0.395
Cosmos-1.0-Autoregressive-12B 9 frames 18.22 0.487 0.869 0.487

Cosmos-1.0-Autoregressive-13B-Video2World prompt + 1 frame 18.00 0.486 0.830 0.397
Cosmos-1.0-Autoregressive-13B-Video2World prompt + 9 frames 18.26 0.482 0.865 0.482

video to the output directly generated by the WFM. Therefore, to produce future observations, we condition our
WFMs on the first few frames (either 1 or 9 frames) of the ground truth video. When applicable, we additionally
condition a WFM on a text prompt (obtained using a proprietary VLM by captioning the conditioning frames),
focusing on the kinematic state of the objects being simulated in the past observations. Please refer to Fig. 20
for some examples of simulated versus predicted scenarios. For evaluation, we use the following metrics:

1. Pixel-level metrics. For a pixel-level comparison, we compute the Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM) to compare a predicted frame from the WFM rollout
with the reference frame from the ground truth video.

2. Feature-level metrics. For a slightly higher-level semantic comparison, we calculate DreamSim similarity
scores (Fu et al., 2023), a feature similarity metric, between the predicted and reference frames.

3. Object-level metrics. Finally, since we care most about how objects of interest are impacted by the
ongoing physical phenomenon, we use tracking to compute object-level metrics that eliminate confounders
(background changes, visual quality, etc.). Since the test conditions are synthetically generated, we have
access to the ground-truth instance segmentation masks of the dynamic objects in the scenes. Using
SAMURAI (Yang et al., 2024), we propagate the ground-truth instance masks in the first frame through
the rest of the predicted video frames to extract tracks, allowing us to quantify object-level metrics. We
compute the intersection-over-union (IoU) between ground truth and predicted object masks for each
frame and object of interest.

We average these metrics across frames in a video, across videos in the evaluation set, and across four random
seeds for rollouts. PSNR and SSIM are computed on all frames, excluding the ones used for conditioning.

Results. Quantitative results on physical alignment are outlined in Tab. 20. Based on quantitative and
qualitative results, we make the following observations. Unsurprisingly, the models are able to better predict
the overall object kinematics with more frames as conditioning input (which allows us to better infer 1st and
2nd order quantities such as speed and acceleration).

From the table, we also find that our diffusion WFMs perform better in pixel-level prediction than our au-
toregressive WFMs on the 9-frame conditional setting. This correlates with our visual observation that the
diffusion-based WFMs render videos with higher visual quality. We also note that our results do not suggest that
the larger model performs better on our physics alignment. While we observe larger models render videos with
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higher visual quality, all the WFMs equally struggle with physics adherence and require better data curation
and model design.

More generally, we observe that the rigid-body simulations described above already test the limits of our WFMs,
serving as valuable tools for identifying specific failure cases. These range from low-level issues like object
impermanence (spontaneous appearance and disappearance of objects) and deformation (shape changes) to
more complex problems such as implausible kinematics, violation of gravity, etc. We believe such structured
simulations offer a useful methodology to test physics alignment. We, therefore, intend to improve them over
time by incorporating more complex scenarios, enhancing photorealism to bridge the sim-to-real gap (since
WFM pre-training data consists of real videos), and refining our evaluation metrics for a more comprehensive
assessment of physical understanding.

6. Post-trained World Foundation Model
In this section, we demonstrate how our Cosmos WFMs can be fine-tuned to support diverse Physical AI appli-
cations. We include examples from post-training our WFM with camera control to achieve 3D navigable visual
world generation, post-training our WFM with action control on two different robotic setups for two different
robotic manipulation tasks, and post-training our WFM with multi-view support for training autonomous
driving agents.

Table 21: A map of Post-trained WFMs discussed in Sec. 6.

Section Model Condition(s)

Sec. 6.1 Cosmos-1.0-Diffusion-7B-Video2World-Sample-CameraCond Text + Image + Cameras
Sec. 6.2 Cosmos-1.0-Autoregressive-7B-Video2World-Sample-Instruction Text + Video
Sec. 6.2 Cosmos-1.0-Diffusion-7B-Video2World-Sample-Instruction Text + Video
Sec. 6.2 Cosmos-1.0-Autoregressive-7B-Video2World-Sample-ActionCond Action + Video
Sec. 6.2 Cosmos-1.0-Diffusion-7B-Video2World-Sample-ActionCond Action + Video
Sec. 6.3 Cosmos-1.0-Diffusion-7B-Text2World-Sample-MultiView Text
Sec. 6.3 Cosmos-1.0-Diffusion-7B-Text2World-Sample-MultiView-TrajectoryCond Text + Trajectory
Sec. 6.3 Cosmos-1.0-Diffusion-7B-Video2World-Sample-MultiView Text + Video

Tab. 21 provides a list of the discussed post-trained WFMs in different subsections of this section. We also
list the conditional inputs to highlight the operation mode. Note that for each model, we add “-Sample“ to
emphasize our goal is to provide sample applications of our pre-trained WFMs. Those models are by no means a
complete system or a production model for any real-world applications. The developer would need to fine-tune
the WFMs on their custom datasets for their Physical AI setups for their target applications.

6.1. Post-training WFM for Camera Control
Through camera pose conditioning, we integrate camera control into Cosmos-1.0-Diffusion-7B-Video2World,
making it an effective 3D world simulator. We term the result post-trained WFM as Cosmos-1.0-Diffusion-7B-
Video2World-Sample-CameraCond. We focus on generating 3D worlds from a single reference input image,
leveraging camera control to produce temporally coherent and 3D-consistent video simulations from the
specified camera trajectories, where changes in perspective align with the underlying 3D structure of the scene.

6.1.1. Dataset
We use DL3DV-10K (Ling et al., 2024), a large-scale video dataset of static scenes, for this task. As a preprocessing
step, we chunk all videos into clips with 256 frames. To obtain camera pose annotations densely for all frames
within a clip, we run structure-from-motion on the chunked clips using GLOMAP (Pan et al., 2025). We set
the camera pose of the first frame to be the identity transform and compute the relative camera poses for all
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subsequent frames. We also use a proprietary VLM to caption the videos to obtain text prompts that describe
the videos as static scenes.

6.1.2. Fine-tuning
We add camera control conditioning by concatenating the sampled latent embeddings with Plücker embed-
dings (Sitzmann et al., 2021), which has the same spatial dimensions as the latent embeddings. Specifically,
given the camera pose, we compute the Plücker coordinates via

r = (d,m) ∈ R6 where m = c× d , (11)

where c is the camera center location and d is the unit ray direction of each latent pixel (where the latent
embedding is treated as a downsampled image). All the camera poses are relative with respect to the initial
frame. The Cosmos-1.0-Tokenizer-CV8x8x8 used by Cosmos-1.0-Diffusion-7B-Video2World models has a
temporal compression rate of 8×, and thus for every 8 frames, we use the Plücker embedding at the 4th frame
to concatenate with the corresponding latent representation.

We resized the input frames of our training videos to 704× 1252 and padded them to 704× 1280 with reflection.
We sample 57 frames during training. The training objective and other hyper-parameters are the same as the
base Diffusion WFM training (Sec. 5.1.3).

6.1.3. Evaluation
We assume a single reference image of the world is given and generate the future rollout as a video from the
input image. We compare against CamCo (Xu et al., 2024), the state-of-the-art model for camera-controllable
video generation under this setup. For a fair comparison, we use the CamCo model that was also fine-tuned on
the DL3DV-10K (Ling et al., 2024) training set. As our post-trained WFM generates 57 frames and CamCo can
only generate 14 frames, we compare the same 57-frame trajectories where we temporally downsample by 4×
for CamCo. The video resolution from CamCo is limited to 256× 256. We additionally maximally center-crop
the input image and test frames for evaluation.

For the test data, we use the same 500 samples from the RealEstate10K (Zhou et al., 2018) test set previously
described in Sec. 5.3.1. We use the initial frame as the reference image and camera trajectories provided by
the dataset as the camera control input, which we additionally rescale such that the distance between two
ends of trajectories is normalized to 1.

Metrics. Following Xu et al. (2024), we evaluate the camera controllability of the post-trained world model
in two aspects: video generation quality and 3D consistency. For video quality, we use the Fréchet Inception
Distance (FID) (Heusel et al., 2017) and the Fréchet Video Distance (FVD) (Unterthiner et al., 2019) to assess
the qualities at the frame and video levels, respectively. We use the same test data as the reference videos to
compute the metrics (note that they are not used for pixel-level comparisons).

For 3D consistency, we evaluate via the ability of structure-from-motion (Pan et al., 2025; Schönberger et al.,
2016; Schönberger and Frahm, 2016) libraries to re-estimate the camera poses, and we compare the results
against the input camera control trajectories. Given 𝑁 frames in the video, we quantify the camera trajectory
error into two terms: the average rotation error 𝜖rot and translation error 𝜖trans, defined respectively as

𝜖rot =
1

𝑁

𝑁∑︁
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where R𝑖 and t𝑖 are the input rotation and translation of the 𝑖-th frame (serving as ground truth), and R̂𝑖

and t̂𝑖 are the re-estimated quantities. To account for ambiguities from camera pose estimation results up to a
similarity transformation, we follow Lin et al. (2021) and run Procrustes analysis on the predicted camera
trajectories to align against the ground truth.
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Figure 21: Qualitative comparison of camera control models. Given the input frame and camera trajec-
tory (color-coded temporally from red to violet), we compare Cosmos-1.0-Diffusion-7B-Video2World-Sample-
CameraCond against CamCo (Xu et al., 2024) on the generated future frames as well as the re-estimated
camera poses. CamCo suffers from the data distribution shift and often generates inaccurate trajectories or
even out-of-distribution image syntheses that lead to un-estimatable camera poses. In contrast, the Cosmos
camera control model can successfully generate future frames aligned with the camera control input while also
maintaining high video quality and 3D consistency.
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Table 22: Quantitative comparison of post-trained WFM with camera control.
Camera Trajectory Alignment Video Generation Quality

Pose estimation Rotation Translation FID ↓ FVD ↓Method success rate (%) ↑ error (°) ↓ error ↓
CamCo (Xu et al., 2024) 43.0% 8.277 0.185 57.49 433.24

Cosmos-1.0-Diffusion-7B-Video2World- 82.0% 1.646 0.038 14.30 120.49Sample-CameraCond

Comparisons. We present the results in Tab. 22. First, our post-trainedWFM can generate realistic and coherent
3D worlds. This is evidenced by the lower FID/FVD scores (higher visual quality) and the higher camera
pose estimation success rate. Cosmos-1.0-Diffusion-7B-Video2World-Sample-CameraCond demonstrates better
camera control, as the camera trajectory re-estimation is significantly closer to the original control input.

We also provide visual comparisons in Fig. 21. While CamCo struggles to generate content beyond the input
image, Cosmos-1.0-Diffusion-7B-Video2World-Sample-CameraCond effectively generates visuals that adhere
to the structure of a 3D world. Note that both models were post-trained on DL3DV-10K and evaluated on
the RealEstate10K dataset, which introduces a significant distribution shift between training and testing. The
Cosmos model successfully overcomes this distribution shift while also demonstrating its capability to generalize
to unseen input camera trajectories.

Qualitative results. Fig. 22 shows our results from joystick-like control input on the camera, including moving
forward, moving backward, rotating left, and rotating right. This demonstrates the use case where one can
navigate the simulated world using a joystick to control the model in generating future video frames. A Physical
AI agent could also use such control to predict the future of the world under different scenarios.

To show the diversity of the generation, we show generation results from the same input image and camera
control with different random seeds in Fig. 23. Cosmos-1.0-Diffusion-7B-Video2World-Sample-CameraCond is
able to generate different worlds while still maintaining 3D spatial and temporal coherence in the videos. This
could be used to simulate different possible futures given the current states.

6.2. Post-training WFM for Robotic Manipulation
A world model has the potential to serve as a powerful planner and simulator for robotic manipulation. Here,
we demonstrate how we fine-tune our pre-trained WFMs for two tasks: (1) instruction-based video prediction
and (2) action-based next-frame generation. For instruction-based video prediction, the input is the current
video frame of a robot as well as a text instruction, and the output is a predicted video of the robot following
the instruction. For action-based next-frame prediction, the input is the current video frame of a robot as well
as an action vector between the current and next frame, and the output is the predicted next frame showing
the result of the robot performing the specified action. Given a sequence of actions, the model can be run
autoregressively to predict a video of the robot executing the given actions.

6.2.1. Datasets
We curate two datasets for the two tasks described above. For instruction-based video prediction, we
created an internal dataset called the Cosmos-1X dataset. It comprises approximately 200 hours of egocentric
videos captured by EVE, a humanoid robot from 1x.Tech (Technologies, 2024) performing a variety of tasks,
including navigation, folding clothes, cleaning tables, picking up objects, etc. From the raw videos, we selected
approximately 12,000 episodes ranging from 1 to 9 seconds. Each episode is labeled with a one-sentence
instruction, which is later upsampled with a proprietary VLM. The videos are captured at 30 FPS with a
resolution of 512× 512.

For action-based next-frame generation, we used a public dataset called Bridge (Ebert et al., 2022), with the
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Figure 22: Cosmos-1.0-Diffusion-7B-Video2World-Sample-CameraCond results with joystick control. For
each input frame (left-most column), we apply 4 different camera trajectories created with joystick-like control:
moving forward, moving backward, rotating left, and rotating right. We visualize frames 14, 28, 42, and 57 from
the generated videos.
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Figure 23: Cosmos-1.0-Diffusion-7B-Video2World-Sample-CameraCond results with different seeds. We
show the capability of simulating diverse futures with our camera control model given the same input image
and camera condition. For each group, we apply the same input frame and camera condition created with
joystick. The first group shows moving backward and second group shows rotating right. Within each group, we
show the generated videos with 3 different random seeds in each column. We visualize frames 19, 38, and 57
from the generated videos.
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same configuration as a prior work (Zhu et al., 2024) for comparison. The Bridge dataset includes approximately
20,000 episodes of third-person views of a robot arm performing different tasks in a kitchen environment,
with videos of 320 × 256 resolution captured at 5 FPS. For each video frame, the corresponding action is
defined as a 7-dimensional vector in the gripper coordinate space (∆𝑥,∆𝑦,∆𝑧,∆𝜃𝑟,∆𝜃𝑝,∆𝜃𝑦,∆Gripper) as
in OpenVLA (Kim et al., 2024).

6.2.2. Fine-tuning
We fine-tune both our Cosmos-1.0-Diffusion-7B-Video2World (Sec. 5.1) and Cosmos-1.0-Autoregressive-5B-
Video2World (Sec. 5.2) for instruction-based video prediction and action-based next-frame prediction tasks.

For instruction-based video prediction, we build two models based on the base WFMs. The first is called
Cosmos-1.0-Diffusion-7B-Video2World-Sample-Instruction, and the second is called Cosmos-1.0-Autoregressive-
5B-Video2World-Sample-Instruction. We compute the T5 embedding of the instruction, which is added to the
finetuing of the base model via cross-attention.

For action-based next-frame prediction, we also build two models based on the base WFMs. The first one is
called Cosmos-1.0-Diffusion-7B-Video2World-Sample-ActionCond, and the second one is called Cosmos-1.0-
Autoregressive-5B-Video2World-Sample-ActionCond.

Since action is a new modality not encountered during pre-training, we introduce additional modules inside
our models for conditioning. For Cosmos-1.0-Autoregress-5B-Video2World-Sample-ActionCond, we add an
action embedder MLP to project the action vector into a tensor, which is then incorporated into the model
via cross-attention. For Cosmos-1.0-Diffusion-7B-Video2World-Sample-ActionCond, we also add an action
embedder MLP to predict the action into a tensor but instead, incorporate it into the model by adding it to the
timestamp embedding of the DiT modules.

6.2.3. Evaluation
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Figure 24: Human evaluation results for instruction-based video prediction on Cosmos-1X dataset.
The results show that compared with the baseline model (VideoLDM-instruction), our fine-tuned models
(Cosmos-1.0-Diffusion-7B-Video2World-Sample-Instruction and Cosmos-1.0-Autoregressive-5B-Video2World-
Sample-Instruction) have higher preferences in the four evaluation dimensions.

For instruction-based video prediction, we fine-tune VideoLDM (Blattmann et al., 2023) on the Cosmos-1X
dataset and obtained VideoLDM-Instruction as a baseline for comparison. To evaluate the video generation
performance of the models, we define the following dimensions:
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Input frame Instruction-conditioned generation Input frame Instruction-conditioned generation

Prompt: Organize books by placing them vertically
on a shelf.

Prompt: Grip and elevate a green object from a box
on a tidy worktable.

Prompt: Fold a green fabric item on a table. Prompt: Retrieve a box from a storage shelf using its
articulated hands in a warehouse setting.

Cosmos-1.0-Diffusion-7B-Video2World-Sample-Instruction Cosmos-1.0-Autoregressive-5B-Video2World-Sample-Instruction

Figure 25: Instruction-based video prediction samples on the Cosmos-1X dataset. The left are the results
of Cosmos-1.0-Diffusion-7B-Video2World-Sample-Instruction model, and the right are the results of Cosmos-
1.0-Autoregressive-5B-Video2World-Sample-Instruction model.
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Cosmos-1.0-Diffusion-7B-Video2World-Sample-ActionCond Cosmos-1.0-Autoregressive-5B-Video2World-Sample-ActionCond

Figure 26: Action-based next-frame prediction samples on the Bridge dataset. The left is the results
of the Cosmos-1.0-Diffusion-7B-Video2World-Sample-ActionCond model, and the right is the results of the
Cosmos-1.0-Autoregressive-5B-Video2World-Sample-ActionCond model. As shown, the predicted video frames
closely match the GT video frames for both models.

• Instruction following: Is the generated video aligned with the input language instruction?
• Object permanence: Do objects present in the scene remain throughout the generated video?
• Verity: Does the generated video faithfully represent the real world without unexpected imaginary

objects?
• Overall: Is the generated video reasonable for the robot to plan accordingly?

Human evaluators are tasked to observe a pair of anonymous videos generated by different models but with
the same language instruction and compare them along the dimensions listed above. A group of ten human
evaluators performed the evaluation over 23 test episodes. The statistical results are summarized in Fig. 24.

As shown, we find that both Cosmos-1.0-Diffusion-7B-Video2World-Sample-Instruction and Cosmos-1.0-
Autoregressive-5B-Video2World-Sample-Instruction perform better than VideoLDM-Instruction along the four
evaluation dimensions. Cosmos-1.0-Diffusion-7B-Video2World-Sample-Instruction achieved 78.3% overall
preference compared to 13.0% for VideoLDM-Instruction. Cosmos-1.0-Autoregressive-5B-Video2World-Sample-
Instruction has also achieved better performance than diffusion-based VideoLDM-Instruction. Some predicted
video frames for both fine-tuned WFMs are presented in Fig. 25, which shows the quality of the predicted
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videos.

For action-based next frame prediction, we fine-tuned our models on the Bridge dataset. As a baseline, we
fine-tune IRASim (Zhu et al., 2024) to derive an action-based next-frame prediction model IRASim-Action. We
perform the next-frame prediction autoregressively to generate videos. To evaluate video generation quality,
we compare the generated videos against ground truth videos over 100 episodes randomly selected from the
official Bridge test set.

Table 23: Evaluation of action-based next-frame prediction on Bridge dataset.

Method PSNR ↑ SSIM ↑ Latent L2 ↓ FVD ↓

IRASim-Action 19.13 0.64 0.38 593
Cosmos-1.0-Autoregressive-5B-Video2World-

Sample-ActionCond 19.95 0.80 0.36 434

Cosmos-1.0-Diffusion-7B-Video2World-
Sample-ActionCond 21.14 0.82 0.32 190

The computed metrics are summarized in Tab. 23, including PSNR, SSIM, Latent L2 (Zhu et al., 2024), and FVD.
As shown, both Cosmos-1.0-Autoregressive-5B-Video2World-Sample-ActionCond and Cosmos-1.0-Diffusion-7B-
Video2World-Sample-ActionCond models outperform the baseline model (IRASim-Action). Some predicted
video frames are presented in Fig. 26, which shows the quality of the predicted videos compared to the ground
truth.

6.3. Post-training WFM for Autonomous Driving
A world model for in-the-wild driving scenes has the potential to serve as a powerful simulation engine for
training autonomous driving agents. As most autonomous vehicles are equipped with multiple cameras viewing
different directions, an ideal world model for an autonomous vehicle should also be a multi-view one, preferably
matching the precise setup of the sensors in the target vehicle. Here, we demonstrate how we fine-tune our
pre-trained WFM to create a multi-view world model for autonomous driving tasks.

6.3.1. Dataset
We curate an internal dataset called the Real Driving Scene (RDS) dataset. It comprises approximately 3.6
million 20-second surround-view video clips (equivalent to approximately 20,000 hours of data) captured using
an NVIDIA internal driving platform. Each clip is recorded from six camera views: front, left, right, rear,
rear-left, and rear-right. In addition, the dataset includes ego-motion information that we use to construct the
trajectory data. We use the recorded timestamps of the front camera video to synchronize the frames of all
other views.

This dataset was selected from a large labeled data corpus to match a target distribution of data attributes.
The specific attribute tags include:

• Contender vehicle density (e.g., none, low, medium, high)
• Weather (e.g., clear, raining, snowing, fog)
• Illumination (e.g., day, night)
• Ego vehicle speed (e.g., standing, low, local, highway speeds)
• Ego vehicle behavior (e.g., high, medium, low curvature trajectories and accelerations)
• Road type/population density (based on OpenStreetMap definitions: rural, residential, urban).

Additionally, the dataset was augmented through a second data-mining run to ensure a minimum number of
clips containing rare road structures (e.g., tollbooths, bridges, tunnels, speed bumps, etc.). Finally, videos from
each camera view are captioned separately, starting with a template text string: “The video is captured from a
camera mounted on a car. The camera is facing forward|left|right|backward|rear-left|rear-right.”
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6.3.2. Fine-tuning
We fine-tune our Cosmos-1.0-Diffusion-7B-Text2World (Sec. 5.1) into a multiple-view world model using the
RDS dataset. To ensure consistent video generation across multiple views, we slightly modify the architectural
design described in Sec. 5.1 and fine-tune the WFM to generate videos from all six cameras simultaneously.

We build three multi-view world models, summarized in Tab. 21. The first one is called Cosmos-1.0-Diffusion-
7B-Text2World-Sample-MultiView, which is a multi-view world model that can generate six camera views based
on a text prompt input. The second one is called Cosmos-1.0-Diffusion-7B-Text2World-Sample-MultiView-
TrajectoryCond. This model is built on top of Cosmos-1.0-Diffusion-7B-Text2World-Sample-AV-MultiView and
takes an additional trajectory input as the conditional input signal. The final model, Cosmos-1.0-Diffusion-7B-
Video2World-Sample-MultiView, is fine-tuned from the Diffusion-7B-Video2World-Sample-MultiView model
to support video-based conditioning. It achieves this by incorporating previous frames into the generation
process. Cosmos-1.0-Diffusion-7B-Video2World-Sample-MultiView can take the video output from Cosmos-1.0-
Diffusion-7B-Text2World-Sample-MultiView and generate its extension. All three models output 6 views of 57
frames of video at a resolution of 848× 480.

View-independent positional embedding and view embedding. Instead of extending the FPS-aware 3D RoPE
Positional Embedding to include an additional view dimension, we opt to use the same positional embedding
described in Sec. 5.1 independently to each view. To represent view differences, we modify the denoising
function 𝐷𝜃 to take an additional view embedding as input. That is, the camera view information is supplied
through global view embeddings instead of positional embedding.

View-dependent cross-attention. In our multi-view setting, each of the six views of the same scene would
have a different video description. While we treat all six views as a whole as the state of the diffusion process
and perform self-attention among all the elements in the six views for denoising, we find it beneficial to employ
view-dependent cross-attention for textual inputs. Specifically, the cross-attention operation for each view only
attends to the textual description for the specific view. Note that each view has a different video description in
our dataset. With the view embedding and view-dependent cross-attention, we derive Cosmos-1.0-Diffusion-
7B-Text2World-Sample-MultiView from fine-tuning Cosmos-1.0-Diffusion-7B-Text2World.

Trajectory control condition. Optionally, in addition to the text condition, we fine-tune the model to produce
videos that conform to the given future trajectory paths to enable more precise control of the agent. This enables
the generation of unique driving scenarios that adhere to both driving trajectories recorded by real-world
data and driving environments specified by the input text descriptions. The fine-tuned model is Cosmos-1.0-
Diffusion-7B-Text2World-Sample-MultiView-TrajectoryCond.

We define a trajectory as a sequence of 64 points in the 3D space, representing a sequence of translations of
the agent from the initial position (0, 0, 0) to the final destination, with each point separated by a 0.1-second
interval. We compute the embedding of the trajectory input and make the result a conditional input to the
denoiser of the fine-tuned Cosmos-1.0-Diffusion-7B-Video2World model. We note that it is possible to achieve
more fine-grained control signals by giving a per-interval action vector, following prior works (Hu et al., 2023;
Kim et al., 2020, 2021) or as in the robotic manipulation task (Sec. 6.2). We leave such extensions for future
work.

6.3.3. Evaluation
We first present text-conditioned qualitative results in Fig. 27. Using Cosmos-1.0-Diffusion-7B-Text2World-
Sample-MultiView, we generate a 57-frame video with six views, which is then extended to 201 frames using
the Cosmos-1.0-Diffusion-7B-Video2World-Sample-MultiView model. In Fig. 28, we demonstrate how the
pre-trained world model enhances generalization, enabling the generation of rare or out-of-domain scenes
from the RDS dataset, such as driving on a river. Lastly, Fig. 29 showcases the results from Cosmos-1.0-
Diffusion-7B-Text2World-Sample-MultiView-TrajectoryCond, where the ego car accurately follows the input
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Prompt: The video captures a highway scene with
a white truck in the foreground, moving towards the
camera. The truck has a large cargo area and is
followed by a motorcyclist wearing a full-face helmet.
The road is marked with white lines and has a metal
guardrail on the right side. The sky is partly cloudy,
and there are green trees and bushes visible on the
roadside. The video is taken from a moving vehicle,
as indicated by the motion blur and the changing
perspective of the truck and motorcyclist.

Prompt: The footage shows a multi-car pile-up on a
foggy highway. Visibility is severely reduced due to
thick fog, with only the taillights of vehicles ahead
visible. Suddenly, brake lights flash, and cars begin to
swerve and stop abruptly. The highway is cluttered
with stopped and crashed vehicles. The surroundings
are obscured by fog, adding to the chaos and confusion
of the scene.

Figure 27: Text-conditioned samples generated by Cosmos-1.0-Diffusion-7B-Text2World-Sample-
MultiView, extended to 8 seconds by Cosmos-1.0-Diffusion-7B-Video2World-Sample-MultiView. This
figure visualizes all six camera views in a group, with each row corresponding to a specific timestamp. The
left example depicts a highway scene where a motorcycle is riding alongside a large truck. The right example
shows the ego car following a sedan as it takes a right turn in a heavy snowy day.

trajectory.

For quantitative results, as a baseline, we followed the same fine-tuning recipe to fine-tune VideoLDM (Blattmann
et al., 2023) to derive a multi-view world model called VideoLDM-MultiView. We use a set of evaluation metrics
measuring video generation quality, multi-view consistency, and trajectory following accuracy. To evaluate
video generation quality, we use 1000 samples to compute the scores. For consistency-related metrics, to better
understand different models’ behaviors under different scenarios, we categorize the ground-truth trajectories
into four types: moving forward, turning left, turning right, and others (including static or complex movements).
For each category, we gathered 200 samples and their corresponding prompts and conditions, totaling 800
samples. Below, we provide detailed descriptions of the metrics and the results.

Generation quality. We utilize Fréchet Inception Distance (FID) (Heusel et al., 2017) and Fréchet Video
Distance (FVD) (Unterthiner et al., 2019) to measure the quality of the generated videos relative to the real
ones. We first calculate a score per view by extracting 16 frames from each video. We then report the average
score across all views per method. As shown in Tab. 24, we find both Cosmos-1.0-Diffusion-7B-Text2World-
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Prompt: There are towering, intricately designed ice
castle illuminated from within. Ahead, the sky show-
cases a vibrant sunset and a luminous moon positioned
to the left of the castle, casting a blue hue across the
scene. Fast-moving, dark, and dramatic clouds add
to the otherworldly atmosphere. The 3D realistic art
style focuses on lighting and texture, creating a strik-
ing visual effect.

Prompt: The footage captures a coastal area where
the ocean meets a rugged, rocky cliff. Ahead, vibrant
blue waves crash against the rocks, creating white
foam. The cliff is a mix of brown and green hues,
indicating vegetation and possibly moss or algae.

Figure 28: Text-conditioned samples generated by Cosmos-1.0-Diffusion-7B-Text2World-Sample-
MultiView are extended to 8 seconds by Cosmos-1.0-Diffusion-7B-Video2World-Sample-MultiView. The
post-trained world model effectively preserves its generalization ability. In the left example, the ego car is
driving towards an ice castle, while in the right example, the ego car is shown driving on a river.

Sample-MultiView and Cosmos-1.0-Diffusion-7B-Text2World-Sample-MultiView-TrajectoryCond significantly
outperform VideoLDM-MultiView on both metrics, demonstrating the superior quality of our pre-trained 7B
Diffusion-based WFM over the VideoLDM-MultiView baseline.

Multi-view consistency. We use an extended version of the Sampson error (Hartley and Zisserman, 2003;
Sampson, 1982) formulated in Sec. 5.3.1 to quantify the geometry consistency of the generated multi-view
videos. As the ground-truth videos in our RDS dataset share similar fisheye camera intrinsic parameters, we use
the median calibration to undistort the keypoints to a regular pinhole camera with a uniform size of 960× 540

and 120 degrees of horizontal FoV. Under this setting, two metrics are computed for the generated multi-view
video:

1. Temporal Sampson Error (TSE) measures whether the content generated for each camera is consistent
over time. It is the median Sampson error of adjacent frames for each of the views.

2. Cross-view Sampson Error (CSE) measures whether multi-view consistency is preserved over time. It is
the Sampson error across different generated views averaged in time. The fundamental matrix used in
CSE is estimated using the keypoints accumulated across all temporal frames.

As shown in Tab. 24, we find that both Cosmos-1.0-Diffusion-7B-Text2World-Sample-MultiView and Cosmos-
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Table 24: Evaluation on post-trained multi-view world models for multi-view driving video generation.

Generation Quality Multi-View Consist.
Method FID ↓ FVD ↓ TSE ↓ CSE ↓

VideoLDM-MultiView 60.84 884.46 1.24 6.48
Cosmos-1.0-Diffusion-7B-Text2World-

Sample-MultiView 32.16 210.23 0.68 2.11

Cosmos-1.0-Diffusion-7B-Text2World-
Sample-MultiView-TrajectoryCond - - 0.59 2.02

Real Videos (Reference) - - 0.69 1.71

Table 25: Trajectory consistency evaluation on post-trained multi-view world models for multi-view driving
video generation. The numbers of TAE are scaled by 102 for convenience, and the unit for TFE is cm.

Method TAE-ATE ↓ TAE-RPE-R ↓ TAE-RPE-t ↓ TFE ↓
VideoLDM-MultiView 0.88 22.94 0.77 -

Cosmos-1.0-Diffusion-7B-Text2World-
Sample-MultiView 0.77 4.25 0.29 -

Cosmos-1.0-Diffusion-7B-Text2World-
Sample-MultiView-TrajectoryCond 0.54 4.31 0.18 20.20

Real Videos (Reference) 0.49 4.60 0.14 13.49

1.0-Diffusion-7B-Text2World-Sample-MultiView-TrajectoryCond render better multi-view geometry consistency
over VideoLDM-MultiView. The overall geometric plausibility of the generated videos is much better for a world
model fine-tuned from our WFM. We also note that, with the trajectory control condition, such consistency is
further improved thanks to the explicit 3D guidance as Cosmos-1.0-Diffusion-7B-Text2World-Sample-MultiView-
TrajectoryCond is ranked the best.

Trajectory consistency: Trajectory Agreement Error (TAE). We design a robust multi-view camera pose
estimation pipeline similar to the one used in Liang et al. (2024) based on the formulation of Teed and
Deng (2021). Such a pose estimation pipeline features an online dynamic mask generation module and a
highly efficient dense bundle adjustment module, reaching a robust and real-time performance for estimating
multi-view camera poses. We use this pipeline to estimate the camera poses of the front camera, separately
using two multi-view camera configurations that consider “front + left-front” cameras and “front + right-front”
cameras. We then calculate their trajectory errors to show their agreement, reflecting the consistency of the
multi-view generation. Specifically, we compute the Absolute Trajectory Error (ATE) and Relative Pose Error
for both the translational component (RPE-t) and the rotational component (RPE-R). We normalize the length
of the trajectories to 1.0 for fair comparison and exclude the cases with minor camera movements (e.g., a car
stopped at a red light).

As shown in Tab. 25, the results echo the findings from the multi-view geometry consistency, where the
trajectory consistency of the world models fine-tuned from the Cosmos WFM is much better than that from the
VideoLDM-MultiView. We note that the post-trained Cosmos world models have trajectory consistency that is
close to real-world videos.

Trajectory consistency: Trajectory Following Error (TFE). Furthermore, for the model where we have
trajectory control conditions being fed into the model, we use the same camera pose estimation pipeline used
above to compute the poses of the front camera using multi-view information and compare the predicted
trajectory with respect to the ground truth trajectory condition. This measures how well the model follows the
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Visualized Trajectory Input Frame 25 Frame 50 Frame 75 Frame 100

Figure 29: Trajectory-conditioned generated samples from Cosmos-1.0-Diffusion-7B-Text2World-Sample-
MultiView-TrajectoryCond. Given the trajectory inputs on the left-most column, we generate multiview videos
that follow the given trajectory. We visualize the front camera view in this figure.

given trajectory path. As shown in Tab. 25, the trajectory error estimated using the generated videos from our
Cosmos post-trained world models is only <7cm less precise than the ground-truth oracle. Such a considerably
slight margin shows that our model is able to accurately follow the given trajectory path, which is crucial for
training autonomous driving agents.

Objects tracking consistency. Finally, we applied object detection and tracking using YOLOv11x (Khanam and
Hussain, 2024) on the generated 8-second videos. Human annotators were tasked with identifying instances
where the tracking algorithm misinterpreted physically impossible scenarios, such as two distinct objects (e.g.,
a person and a car) merging incorrectly into a single tracked entity. To evaluate this, we provided annotators
with a random sample of 20 generated videos containing 157 objects. Remarkably, none of the 157 objects
exhibited any physically impossible scenarios, demonstrating the physical consistency and object permanence
of our generated driving videos.

7. Guardrails
For the safe use of our WFMs, we develop a comprehensive guardrail system. It consists of two stages: the
pre-Guard stage and the post-Guard stage. The pre-Guard stage leverages Aegis (Ghosh et al., 2024) and a
keyword list to block harmful prompts. The post-Guard stage blocks harmful visual outputs using a video
content safety classifier and a face blur filter. The pipeline is illustrated in Fig. 30.
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Figure 30: Cosmos Guardrail overview. Cosmos Guardrail contains pre-Guard and post-Guard, where pre-
Guard blocks inputs based on Aegis (Ghosh et al., 2024) and keywords, while post-Guard blocks outputs based
on a video content safety classifier and blurs output faces.

7.1. Pre-Guard
Our pre-Guard is a text-domain guardrail comprising an LLM-based guardrail for semantically complex prompts
and a simple blocklist-based checker for explicitly unsafe keywords.

7.1.1. Keyword Blocking
The blocklist heuristic will act as the first line of defense to mitigate the risk of generating unsafe content.
This is designed to block explicitly harmful generations by doing a keyword search on the prompt against a
hard-coded blocklist of a large corpus of explicit and objectionable words. Input words are lemmatized using
WordNetLemmatizer, a tool that uses a lexical database of the English language (Miller, 1995) to extract the
root word from its variants. For example, the root word of “abacii” is “abacus”. These lemmatized words are
then compared to the words in the hard-coded blocklist, and the entire prompt is rejected if any profanity is
found. We use a comprehensive set of keywords to maximally protect our users.

7.1.2. Aegis Guardrail
As the second line of defense, we use Aegis-AI-Content-Safety-LlamaGuard-LLM-Defensive-1.0 (Ghosh et al.,
2024), which is a fine-tuned version of Llama-Guard (Inan et al., 2023) trained on NVIDIA’s Aegis Content
Safety Dataset covering NVIDIA’s broad taxonomy of 13 critical safety risk categories. There are two versions of
AEGIS 1.0, the defensive version and the permissive version. The defensive version adopts a tighter permission
boundary than the permissive version. Cosmos uses the defensive version of Aegis to block potentially harmful
user prompts that attempt to generate harmful content. If the input prompt is categorized as unsafe by this
prompt filter, the video is not generated, and an error message is displayed.

For using Aegis as a prompt filter, we classify the prompt as unsafe if it falls into the following categories:
violence, sexual, criminal planning, weapons, substance abuse, suicide, child sexual abuse material, hatred,
harassment, threat, and profanity. Any prompt that does not fall into the above categories is considered safe
from the prompt-filtering standpoint.

7.2. Post-Guard
Our post-Guard is a vision-domain guardrail comprising a video content safety filter and a face blur filter for
the generated output.

7.2.1. Video Content Safety Filter
The Video Content Safety Filter is a frame-level multi-class classifier trained on our video dataset and generation
results. Among the classes, some are considered safe, while others are unsafe. A major challenge in training the
classifier is in balancing false positives, where safe content is mistakenly flagged as unsafe, and false negatives,
where unsafe content is wrongly classified as safe. To minimize classification errors, we carefully balanced the
data during training.
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We collect three kinds of ground truth annotated data. First, we sample a large set of videos from our dataset,
extract frames, and determine its class using a VLM. Next, we generate synthetic videos with our WFMs using
a set of prompts to ensure coverage of corner cases and least-represented content categories. Finally, human
annotators provide the “gold standard” labels for a portion of our dataset, adding a vital layer of validation
and helping us continuously refine the accuracy of our classifier. We extract the SigLIP (Zhai et al., 2023)
embedding for each video frame and train a simple MLP classifier on the embeddings.

During inference, we generate a SigLIP embedding for every frame and then apply the classifier. The entire
video is flagged as unsafe if any frame is classified as unsafe.

7.2.2. Face Blur Filter
We use RetinaFace (Deng et al., 2020), a state-of-the-art face detection model, to identify facial regions with
high confidence scores. For any detected face region larger than 20× 20 pixels, we apply pixelation to obscure
the regions while preserving the overall scene composition for Physical AI applications.

7.3. Red Team Effort
We employ a dedicated red team to actively probe the system using both standard and adversarial examples
that are collected in an internal attack prompt dataset. These video outputs are annotated by a team of
expert annotators, who were specially trained for our task, to classify the generated video on a scale of 1-5 on
multiple categories of harm related to the taxonomy in Sec. 7.1.2. These annotations also specify the start
and end-frames where the unsafe content is detected, thereby generating high-quality annotations. The red
team also probed each guardrail component independently with targeted examples to identify weaknesses and
improve performance in edge cases. As of the date of publication, the red team has tested and annotated over
10,000 distinct prompt-video pairs that were carefully crafted to cover a broad range of unsafe content.

8. Related Work
World models. The concept of “world models” originated from the seminal work of Ha and Schmidhuber
(2018), which proposed learning a representation of the real world using neural network models to predict
future states given current states and inputs. An accurate representation of the physical world model enables
not only reliable prediction of future states but also informed decision-making. This concept of modeling the
physical world is not new; traditional automation and robotics industries have long employed mathematical
models based on physics laws and system identification in planning and control algorithms (Murray et al.,
2017). However, these system-specific models, typically confined to low-dimensional state spaces, restrict
generalization and knowledge transfer across different systems, limiting model reuse when applied to new
tasks or environments. Recent advances in deep learning, particularly generative AI, have made it possible to
learn world models directly from visual observations.

Modern world model pipelines can be categorized based on their backbone architecture. Most works (Hafner
et al., 2019, 2021, 2023; Hansen et al., 2024; Kim et al., 2020, 2021), including the original paper (Ha
and Schmidhuber, 2018) by Ha and Schmidhuber, employ a recurrent neural network to model system state
evolution in a latent space learned via an autoencoder. More recent trends view world models as generative
models in visual observation space, often in the form of conditional video generative models (e.g., action-to-
video, text-to-video). These models can be either autoregressive (Bruce et al., 2024; Liu et al., 2024; Micheli
et al., 2023; Robine et al., 2023; Yang et al., 2023) or diffusion-based (Alonso et al., 2024; Ding et al., 2024;
Valevski et al., 2024), as considered in this work. Another promising approach is generative simulation (Hua
et al., 2024; Nasiriany et al., 2024), which combines generative AI and physical simulators to model the real
world.

A well-trained world model can be applied in various ways, including verification (Hu et al., 2023), planning-
based model predictive control (Bar et al., 2024; Hansen et al., 2024), and model-based reinforcement
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learning (Alonso et al., 2024; Ding et al., 2024; Robine et al., 2023; Yang et al., 2023; Zhang et al., 2024).
The effectiveness of world models has been demonstrated in domains such as computer games (Alonso et al.,
2024; Bruce et al., 2024; Hafner et al., 2021; Kim et al., 2020; Valevski et al., 2024), real-world robots (Wu
et al., 2023; Yang et al., 2023), and autonomous driving (Blattmann et al., 2023; Hu et al., 2023; Kim et al.,
2021; Zhao et al., 2024). We envision that foundational world models will have transformative impacts on
these industries.

Video generative models. The field of video generative models has undergone rapid development in recent
years. From the initial models that produced short, low-resolution videos, the field has evolved significantly,
with video generative models now at the forefront of generative AI research (Ho et al., 2022; Huang et al.,
2024). Recent years have seen the emergence of impressive video generative models, such as Sora, Dream
Machine, Gen 3 and Kling, capable of producing realistic, high-resolution videos (KuaiShou, 2024; Luma, 2024;
OpenAI, 2024; Runway, 2024). These advancements have been made in just a few years since the release of
the first video generative model.

Most existing work on video generative models focuses on text-to-video tasks, which generate videos based on
text prompt inputs (Blattmann et al., 2023; Ge et al., 2023; Girdhar et al., 2024; Lin et al., 2024; Ma et al.,
2024; Yang et al., 2024). These models enable users to create impressive videos using carefully designed
text prompts. Other popular tasks include Image-to-Video that generates videos starting from a given image
frame (Blattmann et al., 2023; Gururani et al., 2023; Mallya et al., 2022; Ren et al., 2024; Wang et al., 2021,
2024), Video-to-Video that generates new videos given a reference video (Ku et al., 2024; Liu et al., 2024;
Mallya et al., 2020; Wang et al., 2018, 2019) and Action-to-Video that generates videos based on actions driven
by the development of world models and embodied AI (Alonso et al., 2024; Bruce et al., 2024; Tulyakov et al.,
2018; Valevski et al., 2024).

The majority of video generative models adopt the diffusion model framework (Blattmann et al., 2023; Ge
et al., 2023; Lin et al., 2024; Ma et al., 2024; Yang et al., 2024) to gradually transform noise into video
sequences. Autoregressive models have also been employed for video generation, offering the advantage of
handling video and other modalities in a unified manner (Deng et al., 2024; Kondratyuk et al., 2024; Liu et al.,
2024). While autoregressive models have shown promise, diffusion-based video models still excel in terms
of visual quality. Our goal is to help Physical AI developers advance their applications. We believe that the
diffusion-based and autoregressive-based models both have their pros and cons. Diffusion-based models could
render videos with better visual quality. Autoregressive-based models can better leverage all sorts of techniques
developed by the LLM community. We build both diffusion-based (Cosmos-Diffusion) and autoregressive-based
(Cosmos-Autoregressive) WFMs and make them available to the Physical AI builders.

Video generation with camera control. 3D-consistent video generation traces back to early works in view
synthesis and 3D reconstruction, where the community sought to create 3D-consistent videos using neural
rendering applied to various 3D representations (Kerbl et al., 2023; Li et al., 2023; Mildenhall et al., 2020;
Wang et al., 2021; Zhou et al., 2018). Within this line of research, single-image 3D view synthesis (Charatan
et al., 2024; Lin et al., 2023; Tucker and Snavely, 2020; Wiles et al., 2020; Yu et al., 2021) is particularly
challenging, typically requiring the learning of a strong 3D prior model from multi-view image datasets. As
such 3D prior models often suffer to scale well, learning-based view synthesis has also been explored through a
purely data-driven approach using scalable Transformer architectures (Dosovitskiy et al., 2021; Vaswani et al.,
2017). This bypasses the need for explicit 3D prior knowledge (Rombach et al., 2021; Sajjadi et al., 2022):
instead of relying on neural rendering applied to 3D representations, novel views are synthesized directly by
neural networks conditioned on camera inputs (Tatarchenko et al., 2016). This paradigm has been successfully
scaled up with diffusion models (Liu et al., 2023), finding broad applications in 3D asset generation (Li et al.,
2024; Lin et al., 2023; NVIDIA, 2024; Poole et al., 2023; Qian et al., 2024; Shi et al., 2023). Recent advances in
video generation quality suggest the potential for achieving full 3D consistency through the scaling of training
video data (Brooks et al., 2024). Camera controllability on such models has since become an active area of
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investigation (He et al., 2024; Wang et al., 2024; Xu et al., 2024) for its great potential applications to robotics
and autonomous navigation.

Generative models for robotic control. Recent advances in deep generative models have sparked significant
interest in their application to robotic control. Several approaches have emerged, with one line of work directly
employing diffusion models as visuomotor policies, demonstrating substantial improvements in imitation
learning in various robotic tasks (Chi et al., 2023; Ke et al., 2024; Prasad et al., 2024; Wang et al., 2024). Two
other threads more related to this work are the use of pre-trained image and video generation models as motion
planners and the use of image and video data for generative pre-training. The generative motion planning
approach (Black et al., 2023; Du et al., 2024; Finn and Levine, 2017; Ko et al., 2024; Zhou et al., 2024) aims
to enhance generalization to unseen environments by generating intermediate visual sub-goals rather than
explicit action sequences. This visual representation strategy proves more robust, as image and video sub-goals
can generalize across diverse environmental setups, unlike action sequences that are typically environment-
and task-specific. The generative pre-training approach (Cheang et al., 2024; Gupta et al., 2024; He et al.,
2024) leverages large-scale image and video datasets for pre-training. While Gupta et al. (2024) extract and
utilize features from pre-trained text-to-image diffusion models to guide subsequent policy learning, Cheang
et al. (2024) and He et al. (2024) use a two-stage framework: first pre-training the model to predict future
frames, then fine-tuning it to jointly predict both actions and future frames.

Generative models for autonomous driving. Video generative models have the potential to revolutionize
autonomous driving simulation by enabling the generation of realistic driving videos conditioned on diverse
input modalities, such as text, images, trajectories, 3D data, or maps (Blattmann et al., 2023; Gao et al., 2024,,;
Hu et al., 2023; Jia et al., 2023; Kim et al., 2021; Lu et al., 2025; Wang et al., 2023, 2024; Yang et al., 2024).
Despite their potential, existing approaches have been limited by constraints in data scale (Gao et al., 2024,;
Jia et al., 2023; Lu et al., 2025; Wang et al., 2023, 2024), resolution (Hu et al., 2023; Yang et al., 2024),
and the number of camera views (Blattmann et al., 2023; Gao et al., 2024), restricting their effectiveness
as comprehensive driving world simulators. To overcome these limitations, we leverage the capabilities of
a powerful pre-trained WFM to develop a flexible and scalable driving simulator. Our model achieves high
resolution, elevated frame rates, and multi-view consistency.

Tokenizer. There has been a fairly long history of learning latent features that reproduce the input visual
data (He et al., 2022; Hinton et al., 1995; Kingma, 2013; van den Oord et al., 2017). Recently, such models,
also known as tokenizers, have been widely incorporated as essential components to improve the efficiency of
training large-scale generative models (Esser et al., 2021; Rombach et al., 2022).

Continuous visual tokenizers, often including Autoencoder (AE) and Variational Autoencoder (VAE), compress
visual data into a continuous latent space where diffusion-based models can be efficiently trained on (Ho
et al., 2020; Lipman et al., 2022; Song et al., 2020). At inference time, the generated latents are decoded
back to RGB space with the tokenizer decoder. Various diffusion models have been trained in such a way for
image (Betker et al., 2023; Dai et al., 2023; FLUX, 2024; Gafni et al., 2022; Podell et al., 2024; Ramesh et al.,
2022; Rombach et al., 2022) and video generation (An et al., 2023; Blattmann et al., 2023,; Brooks et al.,
2024; Ge et al., 2023; Girdhar et al., 2024; Wang et al., 2023; Yu et al., 2023; Zeng et al., 2024).

Discrete visual tokenizers additionally involve a quantizer (Lee et al., 2022; Mentzer et al., 2023; van den Oord
et al., 2017; Yu et al., 2024,; Zhao et al., 2024) that further discretizes the continuous latents into a discrete
space, allowing for easy integration into large language models (LLMs) and vision language models (VLMs)
alongside other modalities, such as text and audio. Thus, discrete tokenizers are deployed in various visual
understanding (Sun et al., 2024; Team, 2024; Wang et al., 2024; Wu et al., 2024) as well as image (Chang
et al., 2022; Esser et al., 2021; Ramesh et al., 2021; Sun et al., 2024; Yu et al., 2022) and video generation
tasks (Ge et al., 2022; Hong et al., 2023; Kondratyuk et al., 2024; Luo et al., 2024; Villegas et al., 2023; Wu
et al., 2022; Yan et al., 2021; Yu et al., 2023).
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Cosmos tokenizers are extensively built based on previous studies, e.g., FSQ (Mentzer et al., 2023) and causal
architecture (Yu et al., 2023), with the goal of creating a suite of efficient and high-quality tokenizers.

9. Conclusions and Discussions
The Cosmos World Foundation Models mark a significant step towards building general-purpose simulators for
the physical world. This work outlines our comprehensive approach, including the data curation pipeline, the
design of continuous and discrete tokenizers, the architecture of diffusion and autoregressive world foundation
models, and the fine-tuning process for diverse downstream Physical AI tasks. Notably, we demonstrate the
adaptability of our pre-trained world models to critical applications, including 3D world navigation, robotic
manipulation, and autonomous vehicle systems, which demand both 3D consistency and action controllability.

Limitations. Despite the progress, the development of world foundation models is still in the early stages.
Current models, including ours, fall short as reliable simulators of the physical world. We observe that our
models still suffer from issues, including the lack of object permanence, inaccuracies in contact-rich dynamics,
and inconsistency in instruction following. Additionally, the realism of the generated videos does not always
reflect adherence to fundamental physical principles, such as gravity, light interactions, and fluid dynamics.

Evaluation presents another significant challenge. Defining robust rubrics for humans to evaluate physical
fidelity is hard as such assessments are often influenced by personal biases, backgrounds, and other subjective
factors. Moreover, these evaluations may not align positively with metrics used in downstream Physical AI tasks.
In order to address these challenges, promising directions include the development of automated evaluators
powered by multi-modal LLMs and leveraging existing physical simulators to enable reproducible and interactive
evaluation, thereby reducing dependence on human evaluation.

Autoregressive vs. Diffusion WFMs. Our evaluation results in 3D consistency (Sec. 5.3.1) and video generation
for robotics (Sec. 6.2) indicate that diffusion-based WFMs currently deliver better generation quality. Through
fine-tuning, diffusion-based WFMs are able to incorporate diverse control signals, including camera pose,
end-effector positions, or autonomous vehicle trajectories, and generate outputs of novel formats like multi-view
videos. However, autoregressive-based WFMs possess significant untapped potential. They could (1) leverage
pre-trained weights from large language models (LLMs) to inherit extensive world knowledge and (2) enable
faster generation through the use of advanced inference optimization techniques designed for causal attention.
If these capabilities are fully realized, autoregressive WFMs may become particularly well-suited for applications
requiring interactive control or real-time processing, such as planning and simulation in robotics. Importantly,
the boundary between diffusion and autoregressive models is not rigid. Recent advancements have shown
that diffusion transformers with bidirectional attention can be distilled into student transformers with causal
attention, enabling support for key-value caching during inference (Yin et al., 2024). Similarly, autoregressive
models can incorporate locally bidirectional attention to generate images via diffusion heads (Zhou et al.,
2024). Exploring these hybrid approaches and their trade-offs remains an active and promising area of research.
We plan to investigate these formulations further and provide a comprehensive analysis in future work.
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