FOOD AND DRUG ADMINISTRATION (FDA) Center for Biologics Evaluation and Research (CBER) 172nd Vaccines and Related Biological Products Advisory Committee (VRBPAC) Meeting

OPEN SESSION

Web-Conference Silver Spring, Maryland 20993

April 6, 2022

This transcript appears as received from the commercial transcribing service after inclusion of minor corrections to typographical and factual errors recommended by the DFO.

ATTENDEES

COMMITTEE MEMBERS	
Arnold Monto, M.D. (Acting Chair)	University of Michigan
Paula Annunziato, M.D. (Industry Representative)	Merck
CAPT Amanda Cohn, M.D.	Centers for Disease Control and Prevention
Hayley Altman-Gans, M.D.	Stanford University Medical Center
Adam Berger, Ph.D	National Institute of Health, Bethesda
Henry Bernstein, D.D., MHCM, FAAP	Zucker School of Medicine at Hofstra University
H. Cody Meissner, M.D.	Tufts University School of Medicine
Paul Offit, M.D.	The Children's Hospital of Philadelphia
David Kim, M.D., M.A.	U.S. Department of Health and Human Services
TEMPORARY VOTING MEMBERS	
A. Oveta Fuller, Ph.D.	University of Michigan
James Hildreth, Sr., Ph.D., M.D.	Meharry Medical College
Jeannette Lee, Ph.D.	University of Arkansas for Medical Sciences
Ofer Levy, M.D., Ph.D.	Boston Children's Hospital 7 Harvard medical School
Wayne A. Marasco, M.D., Ph.D.	Dana-Farber Cancer Institute, Harvard Medical School
Stanley Perlman, M.D., Ph.D.	University of Iowa
Randy Hawkins, M.D Acting Consumer Representative	Private Practice, California
Eric Rubin, M.D., Ph.D.	Harvard T,H, Chan School of Public Health
Mark Sawyer, M.D., F.A.A.P.	University of California at San Diego School of Medicine and Rady Children's Hospital San Diego

Melinda Wharton, M.D, M.P.H.	Centers for Disease Control and Prevention
Michael Nelson, M.D., Ph.D.	University of Virginia School of Medicine
SPEAKERS AND GUEST SPEAKERS	
Sharon Alroy-Preis, M.D., MPH, MBA	Ministry of Health, Jerusalem Israel
John Beigel, M.D.	NIAID, NIH
Trevor Bedford, Ph.D.	Fred Hutchinson Cancer Research Center
Robert Johnson, Ph.D.	Biomedical Advanced Research & Development Authority
Ruth Link-Gelles, LCDR, Ph.D	Centers for Disease Control and Prevention
Ron Milo, Ph.D.	Weisman Institute Rehovot, Israel
Ali Mokdad, Ph.D.	University of Washington
Christopher Murray, M.D., D.Phil.	University of Washington
Heather Scobie,, Ph.D., MPH	Centers for Disease Control & Prevention
Kanta Subbarao, M.D., M.P.H.	WHO Collaborating Center for Reference & Research on Influenza, Melbourne, Australia
FDA PARTICIPANTS/SPEAKERS	
Doran Fink, M.D. Ph.D.	Food and Drug Administration
Peter W. Marks, M.D., Ph.D.	Food and Drug Administration
Jerry Weir, Ph.D.	Food and Drug Administration
Celia M. Witten, Ph.D., M.D.	Food and Drug Administration
FDA ADMINISTRATIVE STAFF	
Prabhakara Atreya, Ph.D.	Food and Drug Administration
Christina Vert, M. S.	Food and Drug Administration

Lisa Wheeler	Food and Drug Administration
Joanne Lipkind, M.S.	Food and Drug Administration
Mr. Michael Kawczynski	Food and Drug Administration

TABLE OF CONTENTS

OPENING REMARKS: CALL TO ORDER AND WELCOME	. 6
ADMINISTRATIVE ANNOUNCEMENTS, ROLL CALL, INTRODUCTION OF COMMITTEE, CONFLICT O	ЭF
NTEREST STATEMENT	. 8
FDA INTRODUCTION2	25
COVID-19 VACCINES:	27
FRAMEWORK FOR FUTURE DECISIONS ON STRAIN COMPOSITION 2	27
AND USE OF ADDITIONAL BOOSTER DOSES2	27
UPDATE ON THE EPIDEMIOLOGY OF SARS-COV-2 STRAINS4	14
COVID-19 VACCINE EFFECTIVENESS IN CHILDREN AND ADULTS6	52
SRAELI EXPERIENCE WITH FOURTH BOOSTER DOSES IN OLDER ADULTS	79
PREDICTING FUTURE SARS-CoV-2 VARIANTS: SARS-CoV-2 EVOLUTION UNDER POPULATION IMMUNE PRESSURE	91
PREDICTING FUTURE SARS-CoV-2 VARIANTS: SARS-COV-2 ANTIGENIC SPACE	00
MODELING OF FUTURE U.S. COVID-19 OUTBREAKS11	11
WHO PERSPECTIVE ON VARIANTS FOR COVID-19 VACCINE COMPOSITION TECHNICAL ADVISOR GROUP ON COVID-19 VACCINE COMPOSITION (TAG-CO-VAC)	
COVID-19 VACCINE STRAIN SELECTION - POINTS TO CONSIDER FOR MANUFACTURING TIMELINES	50
OPEN PUBLIC HEARING	77
PROPOSED FRAMEWORK FOR ADDRESSING FUTURE COVID-19 VACCINE STRAIN COMPOSITION	
COMMITTEE DISCUSSION OF QUESTIONS25	59

1 OPENING REMARKS: CALL TO ORDER AND WELCOME

- 3 MR. MICHAEL KAWCZYNSKI: Good morning. I'm
- 4 Mike Kawczynski and welcome to the 172nd meeting of the
- 5 Vaccines and Related Biological Products Advisory
- 6 Committee Meeting. Throughout today's meeting I may be
- 7 interjecting at times just to make sure the meeting
- 8 runs smooth, in case we run into technical issues.
- 9 I'll be hosting today's meeting. So, this is a full
- 10 day meeting. We'll roughly end around 5:00 this
- 11 afternoon. Keep in mind, because it is live, we can
- 12 run into little issues and may have unscheduled breaks
- 13 to address that.
- 14 With that being said, let's get it kicked off
- 15 and I'm going to hand it off to our chair, Dr. Arnold
- 16 Monto. Arnold, are you ready?
- DR. ARNOLD MONTO: I'm ready. I'd like to
- 18 welcome everyone -- members, voting members, the
- 19 speakers who will be joining us during the open public
- 20 session, and everybody else, to this meeting which is

- 1 the 171st (phonetic) meeting of the VRBPAC. The topic
- 2 today is an open public session to discuss
- 3 recommendations for COVID vaccines and the booster
- 4 process, and the process for vaccine strain selection
- 5 to address current and emerging variants.
- 6 So this is a discussion meeting. We are not
- 7 going to have a vote. This doesn't mean that what we
- 8 are doing today is not important. We've had two other
- 9 meetings which were of great importance which didn't
- 10 result in votes: the one when we affirmed that we
- 11 needed efficacy studies to license vaccines back -- way
- 12 back a year and a half ago, another meeting where we
- 13 discussed the pediatric vaccine program -- again,
- 14 something which set the tone for the rest of the work
- 15 on pediatric vaccines.
- So today's meeting, looking long-term at what
- 17 we're going to do to address the threat of COVID-19 as
- 18 we go forward years from now, is of critical importance
- 19 in setting the pathway to making choices that will have
- 20 enormous impact long-term. Saying that, I'd like to
- 21 turn the meeting over to our Designated Federal

- 1 Officer, Prabha Atreya, who will go through the
- 2 housekeeping items. Prabha.

3

- 4 ADMINISTRATIVE ANNOUNCEMENTS, ROLL CALL, INTRODUCTION
- 5 OF COMMITTEE, CONFLICT OF INTEREST STATEMENT

- 7 DR. PRABHAKARA ATREYA: Thank you, Dr. Monto.
- 8 Can you all hear me okay? Okay.
- 9 MR. MICHAEL KAWCZYNSKI Yes, Prabha, take it
- 10 away.
- DR. PRABHAKARA ATREYA: Okay. Thank you.
- 12 Good morning, everyone. This is Dr. Prabha Atreya, and
- 13 it is my great honor to serve as the Designated Federal
- 14 Officer, that is DFO, for today's 172nd Vaccines and
- 15 Related Biological Products Advisory Committee. On
- 16 behalf of the FDA, the Center for Biologics Evaluation
- 17 and Research, and our VRCPAC committee, I'm happy to
- 18 welcome everyone to today's virtual meeting.
- 19 Today the Committee will meet in open session
- 20 to discuss considerations for COVID-19 vaccine booster
- 21 doses and the process for COVID-19 vaccine strain

- 1 selection to address (audio skip) current and emerging
- 2 variants. Today's meeting and the topic were announced
- 3 in the Federal Register notice that was published on
- 4 March 22nd, 2022.
- 5 At this time I would like to introduce and
- 6 acknowledge the excellent contributions of the staff
- 7 and the great team I have in my division in preparing
- 8 for today's meeting. Ms. Christina Vert is my co-DFO
- 9 providing excellent support in all aspects of preparing
- 10 for and connecting this meeting. Other staff who
- 11 contributed significantly are Ms. Joanne Lipkind, Ms.
- 12 Karen Thomas, and Ms. Lisa Wheeler, who also provided
- 13 excellent administration support. I would like to
- 14 express our sincere appreciation to Mr. Mike Kawczynski
- 15 in facilitating this meeting today.
- 16 Also, our sincere gratitude goes to many CBER
- 17 and FDA staff working hard behind the scenes trying to
- 18 ensure that today's virtual meeting will also be a
- 19 successful one like all the previous VRBPAC meetings on
- 20 the COVID topics. Please direct any press or media
- 21 questions to -- for today's meeting to FDA's Office of

- 1 Media Affairs at fdaoma@fda.hhs.gov. The
- 2 transcriptionist for today's meeting is Ms. Linda
- 3 Giles.
- We will begin today's meeting by taking a
- 5 formal roll call for the Committee members and
- 6 temporary voting members. When it is your turn, please
- 7 turn on your camera, unmute your phone, and then state
- 8 your first and last name. And then when finished, you
- 9 can turn your camera off so we can proceed to the next
- 10 person. Please see the member roster slides in which
- 11 we will begin with the Chair, Dr. Monto. Dr. Monto,
- 12 can we start, please?
- DR. ARNOLD MONTO: Yes, good morning again.
- 14 I'm Arnold Monto. I am at the University of Michigan
- 15 School of Public Health in the Department of
- 16 Epidemiology where I study vaccines, specifically
- 17 influenza and now COVID vaccines, and we work on the
- 18 evaluation of these vaccines and look at transmission
- 19 of the infectious agents in human populations. Thank
- 20 you.
- DR. PRABHAKARA ATREYA: Thank you, Dr. Monto.

- 1 Next, Dr. Hayley Gans.
- DR. HAYLEY ALTMAN-GANS: Good morning. I am
- 3 Dr. Hayley Gans, pediatric infectious disease at
- 4 Stanford University. And I study the immune response
- 5 of vaccines in many different hosts, including children
- 6 and immunocompromised. Thank you.
- 7 DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 8 Annunziato.
- 9 DR. PAULA ANNUNZIATO: Good Morning. I'm
- 10 Paula Annunziato. My day role, so to say, is to lead
- 11 vaccine global clinical development at Merck, and I'm
- 12 here today as the non-voting industry representative.
- 13 DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 14 Adam Berger.
- DR. ADAM BERGER: Hi. I'm Adam Berger. I'm
- 16 the director of the Division of Clinical and Healthcare
- 17 Research Policy at NIH. I oversee all of our clinical
- 18 research policy, everything from human subject's
- 19 protections all through our clinical trial policies.
- DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 21 Henry Bernstein.

- DR. HENRY BERNSTEIN: (Audio skip) pediatrics
- 2 at (audio skip). Hi. I'm Henry Bernstein.
- 3 DR. PRABHAKARA ATREYA: You are breaking up.
- 4 Go ahead, please.
- 5 DR. HENRY BERNSTEIN: Can you hear me now?
- DR. PRABHAKARA ATREYA: Yes, yes.
- 7 DR. HENRY BERNSTEIN: Good morning. I'm -- my
- 8 name's Hank Bernstein. I'm a professor of pediatrics
- 9 at Tucker School of Medicine. I'm a general
- 10 pediatrician with a special interest in infectious
- 11 diseases and vaccines.
- 12 DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 13 Captain Amanda Cohn.
- DR. AMANDA COHN: Good morning. I'm Dr.
- 15 Amanda Cohn at the Centers for Disease Control and
- 16 Prevention. I'm a pediatrician with expertise in
- 17 public health and vaccine policy.
- DR. PRABHAKARA ATREYA: Okay. Thank you.
- 19 Next, Dr. David Kim.
- DR. DAVID KIM: Good morning. This is David
- 21 Kim with the Division of Vaccines in the Office of

- 1 Infectious Disease and HIV/AIDS Policy under the Office
- 2 of the Assistant Secretary for Health. And I am the
- 3 director of the division, and we work on administering
- 4 the national vaccine program. Thank you.
- 5 DR. PRABHAKARA ATREYA: Thank you. Next up is
- 6 Paul Offit.
- 7 DR. PAUL OFFIT: Good morning. My name's Paul
- 8 Offit. I'm a professor of pediatrics at the Children's
- 9 Hospital of Philadelphia in the University of
- 10 Pennsylvania a School of Medicine, and my interests are
- 11 in pediatric infectious diseases and mucosal vaccines.
- 12 Thank you.
- 13 DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 14 Rubin.
- DR. ERIC RUBIN: Hi, I'm Eric Rubin. I'm at
- 16 the Harvard TH Chan School of Public Health, the
- 17 Brigham and Women's Hospital, and the New England
- 18 Journal of Medicine.
- 19 DR. PRABHAKARA ATREYA: Thank you. Next, we
- 20 will do the roll call of the Temporary Voting Members.
- 21 DR. OVETA FULLER: (Audio skip).

- 1 DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 2 Randy Hawkins.
- 3 DR. RANDY HAWKINS: Hi, good morning. Dr.
- 4 Randy Hawkins, I'm an internist and pulmonary
- 5 physician, consumer representative, Charles Drew
- 6 University and in private practice.
- 7 DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 8 Hildreth -- James Hildreth.
- 9 DR. JAMES HILDRETH: Good morning. Good
- 10 morning, I'm James Hildreth. I'm the president and CEO
- 11 Meharry Medical College, Professor of Internal
- 12 Medicine, immunologist by training. And I study the
- 13 pathogenisis of major human viruses such as HIV and
- 14 SARS-CoV-2. Thank you.
- 15 DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 16 Jeanette Lee.
- 17 DR. JEANETTE LEE: Good morning. My name is
- 18 Jeanette Lee, and I'm with the Winthrop A. Rockefeller
- 19 Cancer Institute at the University of Arkansas for
- 20 Medical Sciences. My area is multi-center clinical
- 21 trials. Thank you.

- DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 2 Ofer Levy.
- 3 DR. OFER LEVY: Hi, good morning. My name is
- 4 Ofer Levy. I'm a physician scientist at Boston
- 5 Children's Hospital where I'm a pediatric infectious
- 6 disease attending and Professor of Pediatrics at
- 7 Harvard Medical School. I direct the precision
- 8 vaccines program that uses multi-disciplinary
- 9 approaches to apply precision medicine principles to
- 10 vaccine discovery and development.
- DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 12 Wayne Marasco.
- 13 DR. WAYNE MARASCO: Good morning. This is
- 14 Wayne Marasco. I'm a professor of cancer immunology
- 15 and AIDS at Dana-Farber Cancer Institute and Professor
- 16 of Medicine at Harvard Medical School. I study
- 17 emerging infectious diseases and in particular host-
- 18 microbe interactions and antibody responses. Thank
- 19 you.
- DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 21 Cody Meissner.

- 1 DR. CODY MEISSNER: Good morning. Good
- 2 morning. My name is Cody Meissner. I am a professor
- 3 of pediatrics with an interest in infectious diseases,
- 4 particularly viruses and immunizations. And I
- 5 appreciate the opportunity to participate this morning.
- 6 DR. PRABHAKARA ATREYA: Thank you. Dr.
- 7 Michael Nelson.
- 8 DR. MICHAEL NELSON: Dr. Mike Nelson. I'm
- 9 Professor of Medicine and Chief of Asthma, Allergy, and
- 10 Immunology at the University of Virginia. Also a
- 11 retired Army medical (audio skip) with a longstanding
- 12 interest in vaccine immune response and (audio skip).
- DR. PRABHAKARA ATREYA: Thank you, Dr. Nelson.
- 14 Next, Dr. Stanley Perlman.
- 15 DR. STANLEY PERLMAN: Good morning. I am Dr.
- 16 Stanley Perlman from the University of Iowa. I'm a
- 17 professor of microbiology and immunology and of
- 18 pediatric infectious diseases, and I have a long-term
- 19 interest in coronaviruses.
- DR. PRABHAKARA ATREYA: Thank you. Next, Dr.
- 21 Mark Sawyer.

- DR. MARK SAWYER: Good morning. This is Mark
- 2 Sawyer. I am a professor of pediatric infectious
- 3 disease at UC San Diego and Rady Children's Hospital in
- 4 San Diego, and my -- I work in the area of public
- 5 health implementation of vaccine policy.
- 6 DR. PRABHAKARA ATREYA: Thank you. Last but
- 7 not least, Dr. Melinda Wharton.
- 8 DR. MELINDA WHARTON: Good morning. I'm
- 9 Melinda Wharton. I'm an adult infectious disease
- 10 physician at the Centers for Infectious Disease Control
- 11 and Prevention where I work on vaccines, vaccine
- 12 programs, and vaccine policy. Thank you.
- 13 DR. PRABHAKARA ATREYA: Thank you so much.
- 14 Now I will proceed with the reading of the conflicts of
- 15 interest statement for the public record. Thank you.
- 16 The Food and Drug Administration is convening virtually
- 17 today, April 6th, 2022, for the 172nd meeting of the
- 18 Vaccines and Related Biological Products Advisory
- 19 Committee, VRBPAC, under the authority of the Federal
- 20 Advisory Committee Act, FACA, of 1972. Dr. Arnold
- 21 Monto is serving as the acting voting chair for today's

- 1 meeting.
- 2 Today on April 6th, 2022, the Committee will
- 3 meet in open session to discuss considerations for use
- 4 of COVID-19 vaccine booster doses and the process for
- 5 COVID-19 vaccine strain selection to address current
- 6 and emerging virus variants. This topic is determined
- 7 to be a particular matter of general applicability, and
- 8 as such the meeting does not focus its discussion on
- 9 any particular product, but instead focuses on the
- 10 classes of products under discussion.
- 11 Therefore, please note that this VRBPAC
- 12 meeting is not being convened to make specific
- 13 recommendations that may potentially impact any
- 14 specific party, entity, individual, or form in a unique
- 15 way and any discussion of individual products will only
- 16 be to serve as examples of the product class.
- 17 Additionally, this meeting of the VRBPAC will not
- 18 involve approval or disapproval, labeling requirements,
- 19 go to marketing requirements, or related issues
- 20 regarding the legal status of any specific products.
- 21 With the exception of industry representative

- 1 members, all standing and temporary voting members of
- 2 the VRBPAC are appointed Special Government Employees,
- 3 SGEs, or Regular Government Employees, RGEs, from other
- 4 agencies and are subjected to further conflict of
- 5 interest laws and regulations. The following
- 6 information on the status of this Committee's
- 7 compliance with federal ethics and conflict of interest
- 8 laws including, but not limited to, 18 United States
- 9 Code Section 208, is being provided to participants in
- 10 today's meeting and to the public.
- 11 Related to the discussions at this meeting,
- 12 all members -- Regular Government Employees and Special
- 13 Government Employee consultants of this Committee have
- 14 been screened for potential financial conflicts of
- 15 interest of their own, as well as those imputed to them
- 16 including those of their spouse or minor children and,
- 17 for the purpose of 18 U.S. Code 208, their employers.
- 18 These interests may include investments, consulting,
- 19 expert witness testimony, contracts and grants,
- 20 cooperative research and development agreements or
- 21 CRADAs, teaching, speaking, writing, patents and

- 1 royalties, and primary employment.
- 2 These may include interests that are current
- 3 or under negotiation. FDA has determined that all
- 4 members of this Advisory Committee, both regular and
- 5 temporary members, are in compliance with the federal
- 6 ethics and conflict of interest laws.
- 7 Under 18 U.S. Code Section 208 Congress has
- 8 authorized the FDA to grant waivers to special
- 9 government employees and regular government employees
- 10 who have financial conflicts of interest when it is
- 11 determined that the Agency's need for a special
- 12 government employee's services outweighs the potential
- 13 for the conflict of interest created by the financial
- 14 interest involved or when the interest of a regular
- 15 government employee is not so substantial as to be
- 16 deemed likely to affect the integrity of the services
- 17 which the government may expect from that employee.
- 18 Based on today's agenda and all financial
- 19 interests reported by Committee members and
- 20 consultants, there has been one conflict of interest
- 21 waiver issued under 18 U.S. Code 208 in connection with

- 1 this meeting.
- 2 We have the following consultants serving as a
- 3 temporary voting members: Dr. Oveta Fuller, Dr. Randy
- 4 Hawkins, Dr. James Hildreth, Dr. Jeanette Lee, Dr. Ofer
- 5 Levy, Dr. Wayne Marasco, Dr. Cody Meissner, Dr. Michael
- 6 Nelson, Dr. Stanley Perlman, Dr. Mark Sawyer, and Dr.
- 7 Melinda Wharton. Among these consultants, Dr. James
- 8 Hildreth, a special government employee, has been
- 9 issued a waiver for his participation in today's
- 10 meeting. The waiver was posted on the FDA website for
- 11 public disclosure.
- 12 Dr. Paula Annunziato of Merck will serve as
- 13 the industry representative for today's meeting.
- 14 Industry representatives are not appointed as special
- 15 government employees and serve only as non-voting
- 16 members of the Committee. Industry representatives act
- 17 on behalf of all regulated industry and bring general
- 18 industry perspective to the committee.
- 19 Dr. Randy Hawkins is serving as the
- 20 alternative or temporary consumer representative for
- 21 this Committee meeting. Consumer representatives are

- 1 appointed special government employees and are screened
- 2 and cleared prior to their participation in the
- 3 meeting. They are voting members of the Committee.
- In addition to FDA staff presentations, we
- 5 have a large number of other federal and non-federal
- 6 speakers, as well as some international guest speakers
- 7 today making various presentations on timely and
- 8 relevant topics. The following speakers and guest
- 9 speakers for this meeting have been screened for their
- 10 conflicts of interest and cleared to participate as
- 11 speakers for today's meeting.
- The speakers include Dr. Ruth Link-Gelles,
- 13 Program Lead of COVID Vaccine Effectiveness
- 14 Epidemiology Task Force at CDC and Dr. Heather Scobie,
- 15 Deputy Team Lead Surveillance and Analytics
- 16 Epidemiology Task Force COVID-19 Emergency Task Force,
- 17 also at the CDC; Dr. John Beigel, Associate Director
- 18 for Clinical Research in the Division of Microbiology
- 19 and Infectious Diseases, NIAID, NIH; Dr. Robert
- 20 Johnson, Deputy Assistant Secretary Director of Medical
- 21 Countermeasure Programs at BARDA in Washington, D.C.;

- 1 and Dr. Trevor Bedford who's a Professor at Fred
- 2 Hutchinson Cancer Research Institute and also
- 3 investigator at Howard Hughes Medical Institute in
- 4 Seattle, Washington; Dr. Ali Mokdad, a Professor Health
- 5 Metrics Sciences at the University of Washington,
- 6 Seattle; and Dr. Christopher Murray, a professor of
- 7 Health Metrics Sciences, Director, Institute for Health
- 8 Metrics and Evaluation, University of Washington.
- 9 Additionally, we also have the following
- 10 international guest speakers: Dr. Kanta Subbarao. She
- 11 is Director WHO Collaborating Center for Reference and
- 12 Research on Influenza, Doherty Institute for Infection
- 13 and Immunity Melbourne, Australia. And we are also
- 14 joined by Dr. Sharon Alroy-Preis. She is the Director
- 15 of Public Health, Ministry of Health at Jerusalem,
- 16 Israel; and last, but not least Dr. Ron Milo, a
- 17 Professor in the Department of Plant and Environmental
- 18 Sciences. He is also Dean of Education, Weisman
- 19 Institute, Rehovot, Israel. We thank them all for
- 20 their time in making today's presentation.
- 21 Disclosure of conflicts of interest for

- 1 speakers and guest speakers follows applicable federal
- 2 laws, regulations, and FDA guidance. FDA encourages
- 3 all meeting participants, including open public hearing
- 4 speakers, to advise the Committee of any financial
- 5 relationships that they may have with any affected
- 6 firms, its products, or if known, its direct
- 7 competitors. We would like to remind the standing and
- 8 temporary members that if the discussions involve any
- 9 of the products or firms not already on the agenda for
- 10 which an FDA participant has a personal or imputed
- 11 financial interest, the participants need to inform me,
- 12 the DFO, and exclude themselves from the discussion,
- 13 and their exclusion will be noted for the record.
- 14 This concludes my reading of the conflict of
- 15 interest statement for the public record. At this
- 16 time, I would like to hand over the meeting back to our
- 17 Chair, Dr. Monto. Thank you, and Dr. Monto, take it
- 18 away.
- 19 DR. ARNOLD MONTO: Thank you, Prabha. At this
- 20 point it is my pleasure to introduce the director of
- 21 the Center, Dr. Peter Marks, who will give us his

- 1 introductory remarks and I'm sure give us a warm
- 2 welcome.
- 3 FDA INTRODUCTION

- 5 DR. PETER MARKS: Thanks very much, Dr. Monto.
- 6 And indeed, I want to welcome everyone and thank
- 7 everyone for joining the meeting today. Although we've
- 8 seen a major decline in the number of COVID-19 cases in
- 9 the country, the virus continues to circulate and all
- 10 evidence points to the fact that it will continue to do
- 11 so and will potentially cause waves of an increased
- 12 number of cases at points in the future.
- 13 This is particularly of concern as we head
- 14 into the coming fall and winter season. At that point,
- 15 there may be a confluence of at least three factors
- 16 that come together to put us at risk of another major
- 17 wave. First, the immunity of the population against
- 18 SARS Coronavirus-2, the virus that causes COVID-19,
- 19 will be waning, particularly in those who were
- 20 previously uninfected -- sorry, previously infected and
- 21 not vaccinated and those who received primary

- 1 vaccinations but were never boosted.
- 2 Second, the virus, which has shown its ability
- 3 to change over time to evade our immune systems, will
- 4 have had at least six more months to further evolve.
- 5 And third, we'll be entering the colder season of the
- 6 year in which much of the country goes inside, and
- 7 that's what respiratory viruses tend to peak.
- 8 All that taken together makes us conclude that
- 9 a general discussion of booster vaccination to prevent
- 10 COVID-19 is warranted at this time so that we can
- 11 potentially intervene if it's thought to be warranted
- 12 to make a difference. So that will be the topic for
- 13 discussion today in a general sense. We're not going
- 14 to get down to specifics of the exact vaccine
- 15 composition nor the exact timing, but we'd like to hear
- 16 the Committee's thoughts on this.
- 17 And so, what we'll be doing is having a
- 18 variety of presentations relevant to the board
- 19 discussion of boosters. And the goal will be for the
- 20 Committee to have a general discussion of the
- 21 principles behind the potential need and timing of

- 1 booster vaccination and then how the varying
- 2 composition of such a booster vaccine should be
- 3 selected or what principles we might follow. So we
- 4 really look forward to a productive dialogue today, and
- 5 I want to thank you, once again, for joining. And I'll
- 6 now turn the meeting over to Dr. Doran Fink.

7

8 COVID-19 VACCINES:

- 9 FRAMEWORK FOR FUTURE DECISIONS ON STRAIN COMPOSITION
- 10 AND USE OF ADDITIONAL BOOSTER DOSES

- DR. DORAN FINK: Hi, good morning. I don't
- 13 think I'm in presenter mode. And so I'll either need
- 14 to be put into presenter mode, or I'll need someone to
- 15 advance my slides for me. Thank you.
- 16 MR. MICHAEL KAWCZYNSKI: You should have the
- 17 rights now, Doran.
- 18 DR. DORAN FINK: Gotcha. All right. So good
- 19 morning, everybody. I'm going to be presenting an
- 20 introduction to today's topic on COVID-19 vaccines
- 21 which will be the framework for future decisions on

- 1 strain composition and use of additional booster doses.
- 2 I think my presentation will echo much of what Dr.
- 3 Marks said in his remarks, but perhaps in a little bit
- 4 more detail.
- 5 By way of background, everybody is aware of
- 6 the numbers associated with the SARS-CoV-2 pandemic,
- 7 but I will repeat them here just to remind everyone.
- 8 Since the beginning of the pandemic in early 2020,
- 9 SARS-CoV-2 has caused nearly half a billion reported
- 10 cases of COVID-19 and over six million deaths
- 11 worldwide. And in the United States we've had nearly
- 12 80 million reported cases and nearly one million
- 13 reported deaths.
- As Dr. Marks alluded to, surges in SARS-CoV-2
- 15 transmission and surges in COVID-19 cases,
- 16 hospitalizations, and deaths have been associated with
- 17 a number of factors. Some of these factors are related
- 18 to human behavior and include the typical seasonal
- 19 variation associated with respiratory virus
- 20 epidemiology and also a variable implementation of
- 21 public health control measures such as mask wearing,

- 1 social distancing, and other measures.
- 2 There are factors that are intrinsically
- 3 related to the biological characteristics of the
- 4 SARS-CoV-2 virus that have also attributed to these
- 5 surges. And what we have seen is the emergence of
- 6 variants, for example, Beta, Delta, and most recently
- 7 Omicron, that compared to previously circulating
- 8 strains have been some combination of more infectious,
- 9 more virulent, and/or more resistant to natural or
- 10 vaccine elicited immunity.
- 11 At this time, we have three COVID-19 vaccines
- 12 which have emergency use authorization, two of these
- 13 have FDA licensure for use in the U.S. The various
- 14 authorized or approved uses of these vaccines are
- 15 detailed in the briefing document that we provided to
- 16 Committee members and published ahead of the meeting.
- 17 I am not going to take additional time to go over these
- 18 details, but if the Committee needs a reminder, I do
- 19 have an extra slide at the end that I can go over, if
- 20 needed.
- The effectiveness of available COVID-19

- 1 vaccines has been demonstrated both in clinical trials
- 2 and in post-authorization and post-licensure
- 3 observational studies. Despite the very high level of
- 4 effectiveness against disease of any severity that has
- 5 been observed in randomized clinical trials, we have
- 6 seen evidence of waning vaccine effectiveness which has
- 7 been impacted by, again, a number of factors.
- First of all, we have evidence to suggest
- 9 waning protection over time, most notably against
- 10 milder disease but also to some extent and, especially
- 11 in more highly susceptible populations, against more
- 12 severe or more serious COVID-19 associated outcomes.
- 13 And then intrinsic biological and antigenic
- 14 characteristics of the SARS-CoV-2 variants that have
- 15 become dominant have also resulted, as I mentioned
- 16 earlier, in at least some level of antigenic escape
- 17 from vaccine elicited immunity. And this has also
- 18 contributed to vaccine effectiveness that we've
- 19 observed in post-authorization and post-licensure
- 20 settings that is less than what we've seen in the
- 21 randomized clinical trials against -- valuating

- 1 effectiveness against the original Wuhan strain.
- 2 So while currently available vaccines are not
- 3 well matched to the dominant circulating variant, which
- 4 is the Omicron BA.2 sublineage, we do still have some
- 5 residual vaccine effectiveness. And effectiveness
- 6 against COVID-19 of any severity as well as in
- 7 particular more serious outcomes is improved by use of
- 8 booster doses. And we have very good data to support
- 9 this conclusion.
- 10 We all struggle with the unpredictability that
- 11 has defined the SARS-CoV-2 pandemic to date. But
- 12 despite this unpredictability, we need to plan for the
- 13 future. And these planning efforts for future
- 14 utilization for COVID-19 vaccine should consider
- 15 several things; first, whether vaccine strain
- 16 composition should be modified to improve protection
- 17 against currently circulating virus and/or to improve
- 18 breadth of coverage so that vaccines will be more
- 19 likely to remain effective against potentially emerging
- 20 variants in the future; and secondly, whether
- 21 additional booster doses should be recommended in

- 1 anticipation of the next potential COVID-19 surge --
- 2 and if additional booster doses are to be recommended,
- 3 then when, and in which populations.
- 4 The decisions on these planning questions
- 5 should ideally be guided by a data driven, formal,
- 6 transparent, and coordinated process that include all
- 7 key stakeholders. Additionally, decisions should
- 8 result in recommendations that are sensible, practical,
- 9 and understandable.
- By sensible, I mean the recommendation makes
- 11 sense based not only on the data evaluated but also the
- 12 situational context in which the data are considered.
- 13 By practical, I mean that the recommendation should be
- 14 actionable and achievable within the operational
- 15 parameters of vaccination program. And by
- 16 understandable, I mean the what and the why of the
- 17 recommendation to be readily apparent to patients,
- 18 healthcare providers, and state and local public health
- 19 authorities which is critical to achieving buy-in and
- 20 to avoiding confusion.
- 21 We all recognize how challenging it has been

- 1 to consistently hit on all of these objectives while
- 2 synthesizing rapidly emerging and evolving data time
- 3 and time again to make the best decisions possible in
- 4 the interest of public health. The purpose of this
- 5 meeting, then, is the lay the groundwork for the
- 6 decisions that will have to be made in the near and not
- 7 so near future.
- 8 To help guide the discussion today we have a
- 9 packed agenda of nine presentations that will address
- 10 key questions related to these future decisions on
- 11 COVID-19 vaccine strain composition and utilization of
- 12 additional booster doses. First up, we will have a
- 13 presentation from Heather Scobie from the Centers for
- 14 Disease Control and Prevention updating us on the
- 15 epidemiology of SARS-CoV-2 strain.
- Second, we will have another presentation from
- 17 Ruth Link-Gelles, also from CDC, summarizing what we
- 18 know about COVID-19 vaccine effectiveness for available
- 19 vaccines in children and adults. We will then hear
- 20 from Sharon Alroy-Preis from the Israeli Ministry of
- 21 Health and Ron Milo from the Weizmann Institute of

- 1 Science in Israel about their experience using a fourth
- 2 dose of the Pfizer vaccine BNT162b2 in the setting of
- 3 the Omicron surge that occurred in Israel.
- 4 After that, we will hear from John Beigel at
- 5 NIAID about the SARS-CoV-2 antigenic space, and Trevor
- 6 Bedford from the Fred Hutchinson Cancer Research Center
- 7 about continuing SARS-CoV-2 evolution under population
- 8 immune pressure. These presentations will help to
- 9 inform how data modeling might help to predict
- 10 antigenic evolution of SARS-CoV-2 and effectiveness of
- 11 SARS -- of COVID-19 vaccines going forward.
- 12 We'll then have another talk that focuses on
- 13 data and modeling, this time how can data and modeling
- 14 can help predict the trajectory of the pandemic going
- 15 forward. This will be an update from the Institute for
- 16 Health Metrics and Evaluation at the University of
- 17 Washington given by Christopher Murray and Ali Mokdad.
- 18 We'll then end the presentation agenda with a
- 19 series of three talks, the first being from Kanta
- 20 Subbarao from WHO. She will give details on the
- 21 Technical Advisory Group on COVID-19 vaccine

- 1 composition which will inform what plans are being
- 2 considered for how COVID-19 vaccine strain composition
- 3 decisions might be coordinated globally. We'll then
- 4 hear about considerations for timelines for development
- 5 and evaluation of modified COVID-19 vaccines in a
- 6 presentation given by Robert Johnson from BARDA.
- 7 And then finally, we will have our FDA
- 8 presentation given by Jerry Weir that will consider
- 9 questions about how FDA should approach future
- 10 regulatory decisions on COVID-19 vaccine strain
- 11 composition and authorization of additional booster
- 12 doses. And more specifically, he will talk about our
- 13 model -- our established model for strain selection for
- 14 seasonable influenza vaccines and how that might be
- 15 applicable or not to the situation that we have now
- 16 with COVID-19 vaccines.
- 17 Following these scheduled presentations and an
- 18 open public hearing, the VRBPAC will be asked to
- 19 discuss and provide input on a wide range of topics.
- 20 We know that this is a hefty slate of questions for the
- 21 VRBPAC to discuss. We've allotted two and a half hours

- 1 for you to do so. And as a reminder -- this has been
- 2 mentioned several times -- none of these questions re
- 3 voting questions; they are all general discussion
- 4 questions. So first and foremost, we would like the
- 5 Committee to discuss what considerations should inform
- 6 strain composition decisions to ensure that available
- 7 COVID-19 vaccines continue to meet public health needs.
- 8 And some of the considerations that we would
- 9 like the Committee to discuss include, but are not, of
- 10 course, necessarily limited to: first, the role of
- 11 VRBPAC and the FDA in coordinating the strain
- 12 composition decisions; number two, the timelines needed
- 13 to implement strain composition updates; and number
- 14 three, harmonization of strain composition across
- 15 available vaccines. All of these will be important
- 16 factors to consider in the decision process for COVID-
- 17 19 vaccine strain composition.
- Next, we would like the Committee to discuss
- 19 how often the adequacy of strain composition for
- 20 available vaccines should be assessed. Thirdly, we
- 21 would like the Committee to discuss what conditions

- 1 would indicate need for updated COVID-19 vaccine strain
- 2 composition and also what data would be needed to
- 3 support a decision on a strain composition update.
- 4 And then finally, again, in anticipation of a
- 5 potential surge in the fall or winter which may be with
- 6 a virus that is antigenically similar to what's
- 7 circulating now or may be what -- a virus that is very
- 8 antigenically different, we would like the Committee to
- 9 discuss what consideration should guide the timing and
- 10 populations for use of additional COVID-19 vaccine
- 11 booster doses.
- You'll get to see these questions at least
- 13 several times more as a reminder to help guide your
- 14 thought process as you listen to the presentations and
- 15 prepare for the discussion this afternoon. That's the
- 16 end of my presentation. Thank you.
- 17 DR. ARNOLD MONTO: Thank you, doctor --
- 18 MR. MICHAEL KAWCZYNSKI: Okay. Looks like we
- 19 have about five minutes for a Q&A.
- DR. ARNOLD MONTO: Okay. Thank you, Dr. Fink
- 21 and Dr. Marks. Before we go into a few minutes of

- 1 questions from the group, I'd like to get your feeling
- 2 about the granularity of the responses that you -- we
- 3 are to make. Some of the questions are very specific.
- 4 How often should the adequacy of the strain composition
- 5 be assessed -- which may be very difficult to answer
- 6 under the current circumstances. Is this process going
- 7 to be an ongoing process, and how are we to respond to
- 8 these questions in terms of the detail and specificity?
- 9 Dr. Marks. I think you're muted.
- 10 DR. PETER MARKS: Sorry about that. Dr.
- 11 Monto, thank you very much for that question. I
- 12 probably should have mentioned in my opening remarks
- 13 that (audio skip) beginning of a conversation about
- 14 this. And so, I would say that the granularity today
- 15 can be within a level of comfort that the Committee
- 16 feels that it can get to.
- We would anticipate that before we make any
- 18 further decision about anything regarding the
- 19 composition of a booster, and before public health
- 20 agencies more so than just FDA have a -- make a
- 21 decision about when another booster campaign might be

- 1 recommended, there will at least be another VRBPAC
- 2 meeting to discuss more specifics or particulars about
- 3 such a variant selection for another booster. And
- 4 there will be another opportunity to comment on the
- 5 timing.
- 6 So I would say today's discussion should
- 7 hopefully be one where people don't feel pressured into
- 8 making very specific recommendations but rather talk
- 9 about the considerations that would go into making
- 10 these decisions, and we'll welcome any thoughts about
- 11 general timing or general aspects in some cases because
- 12 we will have other paradigms such as influenza to
- 13 compare to.
- DR. ARNOLD MONTO: Thank you, Dr. Marks. Dr.
- 15 Levy.
- DR. OFER LEVY: Good morning and thank you,
- 17 Dr. Marks and Dr. Fink. Very important topics we'll be
- 18 considering today. In our deliberation, in our framing
- 19 of this discussion, should we be really focused on the
- 20 vaccines that are currently approved and authorized, or
- 21 should we also be taking a bigger picture view?

- 1 There's ongoing innovation on the vaccine end. It's
- 2 possible that additional vaccines might come into play
- 3 that have different characteristics in terms of
- 4 durability of protection, breadth of immune response,
- 5 or different kinds of booster scenarios with different
- 6 platforms.
- 7 So there's some -- already a lot of
- 8 complexity. But for our conversation should we also
- 9 consider that angle? That's a tricky one, isn't it,
- 10 Peter?
- 11 DR. PETER MARKS: I agree that that could be
- 12 somewhat tricky. But I think to the extent that it is
- 13 relevant I think it's -- we would welcome that
- 14 discussion. If Dr. Fink and I think we're getting very
- 15 far afield, we'll let you know that (audio skip) within
- 16 what the Committee thinks might be on the horizon that
- 17 might be relevant for this coming fall/winter season.
- DR. OFER LEVY: Okay. Thank you.
- 19 DR. DORAN FINK: I'll just add that I think,
- 20 you know, to get the most out of this discussion that
- 21 will help us in the near term and to keep things in the

- 1 realm of what is, you know, practical, what's
- 2 actionable and achievable, I would place the higher
- 3 priority on considerations for currently available
- 4 vaccines because those are the decisions that we'll
- 5 have to make soonest.
- 6 DR. OFER LEVY: In the near term. Thanks.
- 7 DR. ARNOLD MONTO: Thank you. Dr. Hawkins.
- 8 DR. RANDY HAWKINS: Thank you very much. I
- 9 just -- although not necessarily related to the current
- 10 agenda, I just want to draw attention to Dr. Fink's
- 11 slide about planning ahead and remind us all about the
- 12 importance of targeted narrative for COVID-19 in human
- 13 populations. There's a lot of distractions out there.
- 14 There's a lot of misunderstanding about the vaccine and
- 15 COVID-19 and really the importance of a targeted
- 16 narrative on many levels of public health about -- to
- 17 the public. Thank you.
- 18 DR. ARNOLD MONTO: And a final question from
- 19 Dr. Hildreth.
- DR. JAMES HILDRETH: Thank you, Dr. Monto, and
- 21 thank you, Dr. Fink and Dr. Marks. You've already made

- 1 a decision about boosters recently, to give them to 60
- 2 plus and those with underlying conditions. So I'm just
- 3 wondering why this discussion is being held now when
- 4 you've already made some major decisions about
- 5 boosters. So what was the reason for not convening the
- 6 VRBPAC to make that decision?
- 7 DR. PETER MARKS: Yeah, Dr. Hildreth. Thanks
- 8 for that question. I think this question gets asked,
- 9 and it deserves an answer. So the decision to allow
- 10 boosters (audio skip) a recommendation right now for
- 11 older individuals and those over 50 with -- so -- was
- 12 to basically allow people the option right now, while
- 13 we still have COVID-19 circulating, to be able to
- 14 essentially restore protection -- levels of protection
- 15 based on data that had come from both United Kingdom
- 16 and Israel indicating some waning of protection.
- We consider that as a -- not a major expansion
- 18 or a major change but something that we looked over the
- 19 data and felt was reasonable to do at the time. This
- 20 discussion today is a much larger discussion. It's the
- 21 discussion of what do we do for the entire population

- 1 and what do we do when we think the virus may have
- 2 evolved further and that may help preclude a major wave
- 3 in the next season -- fall/winter season. So we feel
- 4 like this discussion is more around the larger
- 5 population issue.
- 6 We're not saying which population necessarily
- 7 needs to be boosted come next fall/winter. I think
- 8 that's for the Committee to discuss -- whether it's the
- 9 entire population or a segment of the population. And
- 10 we also, I think, have to think about what goes into
- 11 that vaccine composition, which are fundamentally, I
- 12 think, much larger questions than the narrower question
- 13 of whether a segment of the population could benefit
- 14 from a fourth dose in terms of protecting against what
- 15 might be another wave of COVID that could come in the
- 16 coming months given what we've seen going on both in
- 17 Europe as well as north of our border in Canada.
- DR. JAMES HILDRETH: Thank you.
- 19 DR. ARNOLD MONTO: Thank you both, Dr. Fink
- 20 and (audio skip). Going on now to our first
- 21 presentation (audio skip) on -- update on the

- 1 epidemiology of SARS-CoV-2 strains. And this will be
- 2 globalized soon. Dr. Scobie.

3

4 UPDATE ON THE EPIDEMIOLOGY OF SARS-COV-2 STRAINS

5

- DR. HEATHER SCOBIE: Good morning. Can you
- 7 hear me?
- 8 DR. ARNOLD MONTO: Yes, we can.
- 9 DR. HEATHER SCOBIE: Great. So the U.S. has a
- 10 multifaceted genomic surveillance system for monitoring
- 11 SARS-CoV-2 variants circulating in the -- in our
- 12 country. The system includes sequencing data from the
- 13 national SARS-CoV-2 strain surveillance, CDC-supported
- 14 contracts with several commercial diagnostic
- 15 laboratories, and sequences deposited by partners in
- 16 public repositories such as GISAID and NCBI.
- 17 CDC estimates that if a variant is circulating
- 18 at 0.1 percent frequency there is greater than a 99
- 19 percent chance that it will be detected in national
- 20 genomic surveillance. During Omicron's emergence in
- 21 the U.S., the sensitivity of genomic surveillance was

- 1 further enhanced on a temporary basis through rapid
- 2 screening of PCR specimens with S-gene target failure
- 3 for confirmation by genomic sequencing and expansion of
- 4 voluntary airport-based genomic surveillance programs
- 5 in four U.S. cities.
- 6 This graph from a recent publication shows the
- 7 changing landscape of circulating variants by two-week
- 8 periods during January 2021 to January 2022. Through
- 9 the first pass of 2021, several variants circulated
- 10 simultaneously to the Alpha variant in the teal color
- 11 as this variant was rising to predominance. The Delta
- 12 variant in orange rose to super dominance and almost
- 13 completely displaced other circulating lineages in late
- 14 June 2021, followed by the rapid rise of Omicron in the
- 15 purple color in December 2021.
- This fact bar graph shows the national
- 17 weighted estimates of variant proportions over time in
- 18 the recent Nowcast projections of circulating
- 19 SARS-CoV-2 lineages in the U.S. by week of specimen
- 20 collection by CDC's COVID Data Tracker. The Omicron
- 21 sublineages depicted in the purple shades have

- 1 maintained predominance at 98 percent to 99 percent
- 2 since late January. The BA-2 sublineage of Omicron,
- 3 shown in lavender, was 72 percent as of the week ending
- 4 April 2nd.
- 5 I'll note here and show in a minute that
- 6 despite the rise in the proportion of BA-2 nationally
- 7 we haven't seen a rise in case incidents to date. This
- 8 map shows the relative proportions of BA-2 in lavender
- 9 and other Omicron sub lineages in the darker purple
- 10 shade across the 10 health and human services regions.
- 11 You can see that BA-2 is predominant or greater than 50
- 12 percent in all regions at this point, and the northeast
- 13 and west have higher proportions.
- 14 The Omicron variant has been shown to have
- 15 increased transmissibility but decreased severity
- 16 relative to previous lineages. Omicron has many
- 17 mutations in the spike genes including 15 mutations in
- 18 the receptor binding domain as shown in the picture on
- 19 the right. These mutations are associated with
- 20 reduction in the efficacy of some monoclonal antibody
- 21 treatments and a reduction in neutralization by sera

- 1 from vaccinated or convalescent individuals.
- In 42 lab studies of sera from people who
- 3 received vaccines approved from the -- in the U.S. an
- 4 mRNA primary series had 25-fold reduced neutralization
- 5 of the Omicron variant compared to a reference strain,
- 6 while people with a booster dose had only a six-fold
- 7 reduction. In the graph on the right, which shows the
- 8 relative impacts of variants on neutralization of sera
- 9 after different primary vaccine series shown in
- 10 different colors, the effects of Omicron on viral
- 11 neutralization is greater than previously observed,
- 12 including compared with the Beta variant which
- 13 previously had the strongest impact.
- I'll also note that reductions in
- 15 neutralization for Omicron may be underestimated
- 16 because Omicron neutronization was below the limit of
- 17 assay detection for many individuals who had received
- 18 two doses of mRNA vaccines or one dose of Janssen
- 19 vaccine. And these values had to be imputed or ignored
- 20 to calculate a fold reduction.
- In contrast, neutralization of Omicron was

- 1 above the limit of detection in many individuals who
- 2 either received a booster or vaccinated people who had
- 3 been previously infected. We note that because of the
- 4 limits of detection in these types of assays it's
- 5 difficult to evaluate whether people had the minimal
- 6 level antibodies thought to be needed to protect
- 7 against severe disease.
- 8 This graph shows the trend in the daily number
- 9 of COVID-19 cases reported in the United States since
- 10 the beginning of the pandemic. The number of cases
- 11 associated with the Alpha variant were relatively small
- 12 compared with the Delta variant and then the Omicron
- 13 variant. As of April 5th there have been about 80
- 14 million cases of COVID-19 reported in the U.S.
- These are the trends in seral prevalence for
- 16 the estimated percentage of people in the U.S. with
- 17 anti-nucleocapsid antibodies indicating resolving or
- 18 past infection with SARS-CoV-2 by age group. These
- 19 results do not include anti-spike antibodies from
- 20 vaccination, nor do they reflect the percentage of the
- 21 population that might have sufficient antibodies to be

- 1 protected from reinfection.
- The percentages of people with previous
- 3 infection have increased over the course of the
- 4 pandemic with noticeable increases observed following
- 5 the rapid rise of Delta and Omicron variants. Greater
- 6 seroprevalence was noted in younger age groups, likely
- 7 related to these groups being eligible for vaccination
- 8 in later months than the older age groups and
- 9 potentially related to differences in exposure risks.
- 10 This graph shows the trend in the daily number
- of reported COVID-19 deaths in the United States since
- 12 the beginning of the pandemic including during the
- 13 waves associated with the Alpha, Delta, and Omicron
- 14 variants. As of April 5th, there have been over
- 15 979,000 deaths due to COVID-19 repotted in the U.S.
- 16 These are the weekly trends in COVID-19 associated
- 17 mortality rates by age group.
- 18 The data show that higher mortality is
- 19 consistently observed in older age groups, most notably
- 20 on this graph among those aged 75 plus, 65 to 74, and
- 21 50 to 64 years of age, as shown in the purple and pink

- 1 colors. These are the weekly trends in COVID-19
- 2 associated hospitalization rates by age group. Similar
- 3 to the previous graph you can see higher
- 4 hospitalization rates in the older age groups with
- 5 patients aged 65 years and older in red and 50 to 64
- 6 years in dark blue having the highest rates.
- 7 To date, approximately 218 million people in
- 8 the U.S. have been fully vaccinated with a primary
- 9 vaccine series, which is 70 percent of the eligible
- 10 population age five years and older. And there are
- 11 about 98 million people who have also received an
- 12 additional or booster dose, which is 50 percent of the
- 13 eligible population aged 12 years or older.
- 14 This graph shows trends over time and by age
- 15 group in the percentage of people who have received at
- 16 least the primary series on the left and a booster dose
- 17 on the right. In both figures, vaccination coverage is
- 18 higher in older age groups, indicated in the purple and
- 19 pink colors. And we can also see that coverage with
- 20 the primary series for ages 5 to 11 years, shown with
- 21 the yellow dotted line on the left, is still relatively

- 1 low at 28 percent. Booster dose coverage on the right
- 2 remains under 50 percent for age groups less than 50
- 3 years, as shown in the blue and yellow colors.
- 4 Next, we're going to shift to consider case
- 5 surveillance data from 29 state and local public health
- 6 jurisdictions, shown on the right. These jurisdictions
- 7 routinely link surveillance and immunization registry
- 8 data and collectively represent 67 percent of the total
- 9 U.S. population with good geographic representation.
- 10 Reported COVID-19 cases and COVID associated deaths are
- 11 monitored by vaccination status. It expresses weekly
- 12 rates and incidence rate ratios among the unvaccinated
- 13 versus fully vaccinated either overall or with -- or
- 14 without a booster dose.
- This slide shows the age adjusted rates of
- 16 COVID-19 cases by vaccination status. Unvaccinated
- 17 people in all age groups have higher case rates than
- 18 fully vaccinated people in the same age groups.
- 19 Notably, in February, unvaccinated people aged five
- 20 years and older had 2.8 times higher risk of testing
- 21 positive for COVID-19 compared to people vaccinated

TranscriptionEtc.

- 1 with at least the primary series.
- 2 This slide shows the age adjusted rates of
- 3 COVID-19 associated deaths by vaccinations status.
- 4 Similar to the previous slide, unvaccinated people in
- 5 all age groups had higher mortality rates than fully
- 6 vaccinated people in the same age groups, including
- 7 during periods of Omicron predominance. Notably, in
- 8 January, unvaccinated people ages five years an older
- 9 had nine times the risk of dying from COVID-19 compared
- 10 to people vaccinated with at least the primary series.
- 11 Furthermore, people who are fully vaccinated
- 12 with an additional or booster dose had a noticeably
- 13 lower risk of testing positive and dying from COVID-19
- 14 compared to people who are unvaccinated. This graph
- 15 also shows the additional benefit associated with being
- 16 up to date with vaccination including protecting
- 17 against serious outcomes.
- The COVID-19-associated hospitalization
- 19 surveillance network, or COVID-NET, conducts
- 20 population-based surveillance for laboratory confirmed
- 21 COVID-19 associated hospitalizations within a catchment

- 1 area of over 250 acute care hospitals, in 99 counties,
- 2 in 14 states, representing 10 percent of the U.S.
- 3 population. The standardized case definition is
- 4 residents in the surveillance area and a positive SARS-
- 5 CoV-2 test within 14 days prior to or during
- 6 hospitalization.
- 7 Hospitalization rates are -- by vaccination
- 8 status can be monitored because COVID-NET also relies
- 9 upon routine linkage to immunization information
- 10 systems, and these data are a representative sample of
- 11 hospitalized cases. This graph shows the age adjusted
- 12 rates of COVID-19 associated hospitalizations by
- 13 vaccination status. Hospitalizations for COVID-19 were
- 14 higher among unvaccinated people than fully vaccinated
- 15 people over time, including after Omicron became
- 16 predominant in January 2022.
- In February, compared to fully vaccinated
- 18 adults aged 18 years and older, monthly rates of COVID-
- 19 19 associated hospitalizations were five times higher
- 20 in unvaccinated adults. This graph shows further
- 21 disaggregation of hospitalizations among people who are

TranscriptionEtc.

- 1 fully vaccinated with or without a booster dose. In
- 2 February, compared to fully vaccinated adult's ages 18
- 3 years and older with additional booster doses monthly
- 4 rates of COVID-19 associated hospitalizations were
- 5 seven times higher in unvaccinated adults.
- 6 These COVID-NET data show that hospitalized
- 7 patients that were fully vaccinated were more likely to
- 8 have other underlying risk factors, including being
- 9 older, long-term care facility residents, having a DNR,
- 10 DNI, or CML code, and having more underlying medical
- 11 conditions compared with unvaccinated patients.
- In summary, in 2021, the U.S. experienced a
- 13 dynamic landscape of SARS-CoV-2 variants, including
- 14 Delta- and Omicron-driven resurgences of SARS-CoV-2
- 15 transmission. CDC continues to monitor emerging
- 16 variants like Omicron and BA.2, including their
- 17 prevalence and impact on disease incidence and severity
- 18 over time. Monitoring trends in rates of cases,
- 19 hospitalizations, and deaths by vaccination status has
- 20 been helpful for monitoring the impact of different
- 21 variants.

- 1 And finally, currently authorized vaccines
- 2 offer protection against severe disease but it's
- 3 important to stay up to date with vaccination,
- 4 including receipt of booster doses in eligible
- 5 populations. I'd like to thank the following
- 6 individuals and appreciate your attention. Thanks.
- 7 DR. ARNOLD MONTO: Thank you, Dr. Scobie. We
- 8 have a few minutes for questions now. We're a little
- 9 bit ahead of schedule, and we'll move on after a few
- 10 questions to the next CDC presentation and then have a
- 11 more general discussion. So, Dr. Gans.
- DR. HAYLEY ALTMAN-GANS: Thank you. Thank you
- 13 for that (audio skip). And since we're here actually
- 14 to think about a booster specifically, while we all
- 15 understand that actually increasing the number of
- 16 individuals (audio skip) in general is a great goal for
- 17 us all to have, in the data you really didn't talk
- 18 about the added addition of that booster dose. They
- 19 sort of seemed lumped together with people who have had
- 20 two doses as thinking about that as a primary are
- 21 called fully vaccinated, and then those individuals.

- 1 So my first question is breaking down that
- 2 data so that we can really understand the additional
- 3 relevance of that dose, which we understand there is
- 4 data out there. The other piece of it, because we know
- 5 that immunity in general -- so those -- that is
- 6 provided by natural disease as well, really considering
- 7 the epidemiology of reinfections in those individuals,
- 8 breaking that down for (audio skip). So I guess those
- 9 are really relevant to the discussion today and I'm
- 10 (audio skip).
- DR. ARNOLD MONTO: Dr. Scobie, you're muted.
- 12 MR. MICHAEL KAWCZYNSKI: Go ahead, Heather.
- 13 Heather, I think you have your own phone muted. Can
- 14 you hear me, Heather?
- 15 **DR. HEATHER SCOBIE:** I just had to unmute.
- MR. MICHAEL KAWCZYNSKI: There go you. Now we
- 17 got it.
- DR. HEATHER SCOBIE: Okay. Are we able to go
- 19 back to my slides? I have a few at the end but (audio
- 20 skip). So I think this helps address your question. I
- 21 maybe didn't cover it as clearly as I should have. But

- 1 this looks by age at the same data I was showing of
- 2 cases by vaccination status. And the dotted line is
- 3 those without -- with the primary series only, and the
- 4 solid blue line is with the primary series and booster
- 5 dose. And these data go through the end of January.
- And so, what we're seeing here, at least in
- 7 the older age groups, is that there is -- the gap
- 8 between the people who have the primary series only and
- 9 the people who have a primary series and booster dose,
- 10 it is -- there was a clear benefit through -- for quite
- 11 a while, but the gap has closed a bit in recent months.
- 12 And it's unclear because of the way these data are
- 13 analyzed and the limitations associated with
- 14 surveillance data -- like not being able to control for
- 15 prior infection, for example, it's unclear whether
- 16 that's at play, but it likely is.
- So, for example, you might expect that a
- 18 person with a primary series only might have been --
- 19 you know, might have had higher rates of contracting
- 20 Omicron during the recent waves. And so that -- an
- 21 explanation like that could explain why these people

- 1 are starting to look more similar to those who had a
- 2 primary series and booster dose. And the careful VE
- 3 studies which are able to control for those factors and
- 4 which Dr. Link-Gelles will present on next I think will
- 5 help address that question.
- 6 But I did also want to note that in this graph
- 7 we've recently added the 12 to 17 years old. And you
- 8 can see that those folks who were vaccinated, you know,
- 9 kind of in a wave more recently are showing a larger
- 10 kind of benefit of that booster dose at least right
- 11 now. And then when you look at death by age and
- 12 receipt of a booster dose, of course in the younger
- 13 ages we just have so few deaths, and that's what that
- 14 is showing. But you can see a clear impact including
- 15 now amongst older people of that booster dose. So the
- 16 booster dose is helping prevent death in older ages.
- 17 And I think that is shown quite clearly in the data.
- Does that help address your question? I think
- 19 there was a second one about previous infection. And
- 20 unfortunately, there -- that's not something we're able
- 21 to address with these data at this point. There are

- 1 specific states who've tried to address that question
- 2 because they're able to link to laboratory -- they're
- 3 able to link the surveillance data with laboratory data
- 4 and determine who's been previously infected. Notably
- 5 California and New York have published a nice
- 6 publication. But the data we currently have at CDC for
- 7 this -- that I've shown here, we're not able to look at
- 8 previous infection and move data currently.
- 9 DR. ARNOLD MONTO: Thank you. Dr. Meissner.
- 10 DR. CODY MEISSNER: Thank you, Dr. Monto. And
- 11 thank you, Dr. Scobie, for a very interesting and clear
- 12 presentation. My question stems from this issue.
- 13 We're here to think about when it might be necessary to
- 14 change the composition of the vaccine. Certainly, one
- 15 of the parameters that will be important in that
- 16 consideration will be the rates of hospitalization
- 17 rates of death due to the strains that are circulating
- 18 at that particular time, suggesting the vaccine's not
- 19 as effective as we wish.
- So, my question is this. In the state of
- 21 Massachusetts they keep track of hospitalizations --

- 1 COVID-19 associated hospitalizations and break out
- 2 hospitalizations that are attributable to the infection
- 3 and hospitalizations that are simply found in a
- 4 positive -- a positive in a patient who's hospitalized
- 5 for other reasons. And the data as of April 1st, in
- 6 Massachusetts, there were 216 COVID-associated
- 7 hospitalizations and 85, or 39 percent, were because of
- 8 the infection, and 61 percent were patients
- 9 hospitalized for other reasons, so more than half.
- So I guess the question I have is do you think
- 11 that number changes with different variants that might
- 12 have increased infectivity? And can the CDC provide us
- 13 with that data so that we get a better assessment of
- 14 hospitalizations that are actually due to a variant
- 15 that might be circulating. Thank you.
- 16 DR. HEATHER SCOBIE: Thanks. Yeah, I mean, as
- 17 you're raising, this issue came up -- the question of
- 18 with COVID or for COVID came up in a big way during
- 19 Omicron because, as you rightly pointed out, there has
- 20 just been -- there was, at that point, just so much
- 21 higher community transmission. So there were many

- 1 people lining up incidentally in the hospital for other
- 2 causes that had COVID-19 that was detected, you know,
- 3 upon admission through screening testing.
- A lot of the studies attempt to look at
- 5 whether -- like, I've seen those state data that you're
- 6 talking about, including some other states, and I do
- 7 think that there are studies that have attempted to
- 8 look at, you know, COVID associated hospitalization,
- 9 not just incidental COVID amongst hospitalized
- 10 patients. And so, I do think we're able to uncouple
- 11 that in some cases, and I do think that those studies
- 12 are ongoing and, in some cases, have been published.
- In terms of your question about making the
- 14 data available, I think we are working hard to make all
- 15 of the data available as soon as it's ready. So I'm
- 16 not sure if I've addressed your question but I'm
- 17 willing to -- if you have any follow-up I'm willing to
- 18 address them.
- 19 DR. CODY MEISSNER: No, my -- the only point -
- 20 thank you from that answer. My only point is that
- 21 that will be important data for us to be able to

- 1 consider when we're thinking about whether or not
- 2 there's a need for a change in the vaccine. But -- so
- 3 I appreciate your answer.
- 4 DR. ARNOLD MONTO: Thank you. Doctor --

5

6 [BREAK]

7

- 8 MR. MICHAEL KAWCZYNSKI: All right. Welcome
- 9 back again. That was just a little bit of an
- 10 unscheduled break, but we're going to pick up right
- 11 where we sort of left off with our next presenter. And
- 12 I'm going to hand it back to Dr. Arnold Monto. Dr.
- 13 Monto, are you ready?
- DR. ARNOLD MONTO: Next, we're going to hear
- 15 again from CDC, Dr. Ruth Link-Gelles, who will be
- 16 (audio skip) five minutes.

17

18 COVID-19 VACCINE EFFECTIVENESS IN CHILDREN AND ADULTS

19

- DR. RUTH LINK-GELLES: Hi, good morning, can
- 21 you hear me?

- 1 MR. MICHAEL KAWCZYNSKI: Yes, we can.
- DR. ARNOLD MONTO: Yes, we can.
- 3 DR. RUTH LINK-GELLES: Great. So, this
- 4 presentation is broken up into three sections, by
- 5 increasing severity of the outcome under study,
- 6 including infection, emergency department and urgent
- 7 care visits, and hospitalization, including critical
- 8 illness and then, within each outcome section, by age
- 9 group. Since there are multiple age groups and
- 10 outcomes and a lot of data to track, every slide with
- 11 have an indication, shown here in blue, of the endpoint
- 12 and population displayed. So look for that in the
- 13 upper left-hand corner of each slide.
- I'll begin by discussing vaccine effectiveness
- 15 data for infection, mostly in the U.S. Throughout the
- 16 presentation, I focus on U.S. data, although there is
- 17 one exception at the end of the section on infection.
- 18 So I'll start with talking about the CDC platform known
- 19 as PROTECT, the Pediatric Research Observing Trends and
- 20 Exposures in COVID-19 Timelines. This is a prospective
- 21 cohort study in children aged 4 months to 17 years that

- 1 includes weekly swabbing, regardless of symptom status,
- 2 and uses a person-time model with adjustment for
- 3 propensity to be vaccinated, site, and SARS-CoV-2
- 4 circulation.
- 5 Results were separated by age group, 5 to 11
- 6 years and 12 to 17 years. Here we see the results
- 7 published in CDCs MMWR showing VE for Omicron variant
- 8 among 5 to 11 year olds on the top, 31 percent, and for
- 9 Delta and Omicron among to 12 to 15 year olds on the
- 10 bottom, with an estimate of 59 percent for that age
- 11 group in the 14 to 149 days since vaccination during
- 12 the Omicron period. Note the very wide confidence
- 13 intervals for the longer time since vaccination among
- 14 the 12 to 15 year olds, which makes it difficult to
- 15 interpret waning here. Moving on now to the increasing
- 16 community access to testing, or ICATT platform, which
- 17 is national community-based drive-through testing data
- 18 from pharmacies.
- 19 This platform uses a test negative design,
- 20 where cases are persons with at least one COVID-like
- 21 symptom and a positive NAAT test, and controls are

- 1 symptomatic with a negative NAAT test. This is
- 2 previously published adult data for the Delta, in
- 3 orange, and Omicron, in blue, periods by time since
- 4 second dose, shown on the X-axis, with VE on the Y-axis
- 5 and the dotted lines showing the 95 percent confidence
- 6 intervals. You can see the lower starting VE for
- 7 Omicron compared to Delta and much quicker waning,
- 8 including zero in the confidence interval by three
- 9 months after the second dose in adults.
- 10 And now, we show the same adult data for Delta
- 11 and Omicron and overlay data from adolescents, 12 to 15
- 12 years of age, in black, and children 5 to 11 years of
- 13 age, in pink. Note here the much shorter follow-up
- 14 time for the 5 to 11 year olds due to vaccines being
- 15 recommended for them in November. Generally we see
- 16 almost identical patterns across the age groups, with
- 17 two doses of mRNA vaccines providing roughly 60 percent
- 18 protection initially and quickly waning to about 20
- 19 percent and lower by a few months after the second
- 20 dose.
- Now moving on to the J&J vaccine during

- 1 Omicron only. Here we have different Janssen booster
- 2 schedules on the left, two doses of Janssen, one dose
- 3 of Janssen, followed by one dose of mRNA vaccine or
- 4 three doses of mRNA vaccine as a comparison. Time
- 5 since last dose, zero to one month or two to three
- 6 months is shown as well. And you can see that
- 7 generally the two Janssen doses produced the lowest VE,
- 8 although there was little evidence of waning, even
- 9 against infection where we usually see the most waning.
- 10 The other two schedules produce similar VEs, and though
- 11 there was statistically significant waning for both
- 12 schedules, they both remain significantly higher than
- 13 the Janssen only schedule.
- 14 Finally, I just want to share this slide from
- 15 the UK showing VE for BA.1 and BA.2. Though BA.2 has
- 16 not been prominent in the U.S. long enough to estimate
- 17 VE here, the UK has had higher rates of BA.2 for a
- 18 while and looked at VE by sub-lineage for Pfizer,
- 19 Moderna, and Astra-Zeneca primary series with a Pfizer
- 20 or Moderna booster dose. You can see here that VE was
- 21 generally comparable after both two and three doses of

- 1 vaccine. So, to summarize the VE for infection during
- 2 Omicron, mRNA vaccines tended to start at a lower VE
- 3 for Omicron than Delta and wane faster. Patterns of
- 4 waning by time since second dose looked similar across
- 5 age groups. Waning was different for those who
- 6 received two doses of Janssen and lower overall versus
- 7 schedules that included an mRNA vaccine. And, finally,
- 8 from the UK we have data showing that VE for BA.1 and
- 9 BA.2 are similar.
- 10 I'm now moving on to vaccine effectiveness for
- 11 emergency department and urgent care visits. The
- 12 VISION network is a multi-state network based on
- 13 electronic health care records. Like ICATT, it uses a
- 14 test-negative design, with cases having CLI and a
- 15 positive PCR, and controls having CLI with a negative
- 16 PCR. This is VE from the VISION network for 5 to 11
- 17 and 12 to 15 year olds during the Omicron predominance.
- 18 Like ICATT, we have similar VEs for two doses of mRNA
- 19 vaccines for the two age groups.
- For adolescents 12 to 15 years of age who had
- 21 longer time since vaccination, we see waning for the

- 1 period greater than 67 days since the second dose.
- 2 This is the adult two dose data during Delta, in blue,
- 3 and Omicron, in magenta, with time since second dose
- 4 shown on the left-hand side. You can see the clear
- 5 waning by time since second dose for both variants,
- 6 with lower overall VE for Omicron compared to Delta.
- 7 Moving now to three dose VE for adults. Here again
- 8 Delta is in blue and Omicron in magenta. On the top
- 9 half of the slide we have time since third dose for all
- 10 adults and on the bottom for immunocompetent adults
- 11 only during Omicron.
- We can see that while VE is lower for Omicron,
- 13 and some waning is evident, it's perhaps less extensive
- 14 in the immunocompetent group compared to all adults,
- 15 which includes immunocompromised individuals, a pattern
- 16 we'll see again in the hospitalization VE estimates.
- 17 And now, moving on to hospitalization, starting with
- 18 children. The Overcoming COVID Network is a test-
- 19 negative VE platform specifically aimed at children and
- 20 adults hospitalized at 31 pediatric medical centers in
- 21 23 states.

- 1 As with other platforms, cases have CLI and a
- 2 positive test, while controls have CLI and a negative
- 3 test. Here we have VE of two doses against
- 4 hospitalization for children 5 to 11 years of age
- 5 during Omicron and adolescents 12 to 18 years of age
- 6 during Delta and Omicron. We can see the same pattern
- 7 as for less severe outcomes with lower VE during
- 8 Omicron compared to Delta. However, unlike for less
- 9 severe outcomes, we do not see evidence here of waning
- 10 against hospitalization, shown here out to 44 weeks in
- 11 the adolescent group, even during the Omicron period.
- 12 Overcoming COVID was also able to look at VE
- 13 separated by hospitalization without life support and
- 14 hospitalization with life support or death. And you
- 15 can see in the bottom half of the slide, during
- 16 Omicron, VE of two doses for critical disease was
- 17 significantly higher than for non-critical disease.
- 18 Overcoming COVID also looked at the effectiveness of
- 19 vaccination during pregnancy at prevention of infant
- 20 hospitalization. This is mostly pre-Omicron/Delta, but
- 21 you can see the high VE of 80 percent afforded by

- 1 receipt of a second mRNA dose during the second half of
- 2 pregnancy. Additional work to extend this analysis to
- 3 Omicron is underway.
- And then, finally, also from the Overcoming
- 5 COVID Network, they looked at VE against multi-system
- 6 inflammatory syndrome in children. On the left you can
- 7 see different critical care endpoints. 95 percent of
- 8 MIS-C patients were unvaccinated, and zero fully
- 9 vaccinated children required any critical care. On the
- 10 right you can see VE calculated using different
- 11 controls to look at biases that may be associated with
- 12 different MIS-C definition. No matter the control
- 13 choice, two doses of Pfizer are 89 to 92 percent
- 14 effective at preventing MIS-C.
- Now, revisiting the VISION Network, this time
- 16 looking at hospitalization, this slide shows VE for all
- 17 variants for 5 to 11 year olds on the top and 12 to 15
- 18 year olds on the bottom. For the 5 to 11 group, you
- 19 can see there were only two breakthrough
- 20 hospitalizations during the study period, which
- 21 included two months after children in that age group

- 1 were fully vaccinated. While the point estimate for 5
- 2 to 11 year olds, 74 percent, is lower than the point
- 3 estimate for 12 to 15 year olds, 92 percent, that's
- 4 likely due to the younger age group, which included 67
- 5 percent Omicron cases, for which VE is lower compared
- 6 to earlier variants while the older age group included
- 7 only 15 percent Omicron cases.
- 8 Now looking at VISION hospitalization data for
- 9 adults with Delta in blue and Omicron in magenta. Like
- 10 for the emergency department and urgent care visits,
- 11 two-dose VE for Omicron is significantly lower than for
- 12 Delta. But we see that the third dose provides
- 13 substantial improvement over two doses. And, as with
- 14 the ED/UC data, those furthest out from the third dose
- 15 during this period, shown here in the red box, were
- 16 vaccinated before the booster recommendation was in
- 17 place, meaning many of them were likely
- 18 immunocompromised individuals receiving a third primary
- 19 series dose versus healthy individuals receiving a
- 20 booster dose.
- To resolve this issue, here the VISION Network

- 1 restricted their waning analysis during Omicron to
- 2 immunocompetent adults only. On the left you can see
- 3 three age brackets, as well as time since the third
- 4 dose. For both immunocompetent adults 18 to 44 years,
- 5 and immunocompetent adults over 65 years, there's no
- 6 evidence of waning of VE against hospitalization during
- 7 Omicron. In the middle age bracket, 45 to 64 years,
- 8 there may be a hint of waning, although the confidence
- 9 interval for the four to six month period is wide,
- 10 making interpretation somewhat difficult.
- 11 Finally, VISION also looked at the Janssen
- 12 vaccine, and showed the same pattern we saw previously
- 13 for VE against infection. A single dose, or two doses
- 14 of Janssen, was generally lower, although a booster
- 15 dose of Janssen or an mRNA vaccine was significantly
- 16 better than no booster at all. VE of three mRNA doses
- 17 was significantly higher than Janssen plus any booster.
- 18 Finally, the IVY network covers hospitalized adults at
- 19 21 medical centers in 18 states and uses a test-
- 20 negative design with cases having CLI and a positive
- 21 test and controls being SARS-CoV-2 negative.

- 1 IVY also looked at three-dose VE among
- 2 immunocompetent adults and, similar to VISION, found no
- 3 evidence of waning 120 days plus after the third dose
- 4 for adults of all age groups on the top and adults 65
- 5 plus on the bottom. IVY also looked at VE for critical
- 6 illness or in-hospital death in two recent
- 7 publications. Here they found that VE of two doses for
- 8 critical illness or death during Omicron was 79
- 9 percent, and VE for three doses was statistically
- 10 significantly higher, at 94 percent.
- 11 So, now moving on to summarize, this slide
- 12 shows all the data for children and adolescents.
- 13 Outcome is listed on the far left, with increasing
- 14 severity as you go down the slide. In general, we see
- 15 a pattern of increasing two-dose VE with increasing
- 16 severity, although obviously wide confidence intervals
- 17 for worse outcomes. And now, for adults, we have two-
- 18 dose VE in green and three-dose VE in magenta, again,
- 19 with increasing severity as you go down the slide and
- 20 increasing VE with increasing severity, just like in
- 21 children. The patterns here show the clear benefit of

- 1 a third dose over a second dose during Omicron and the
- 2 highest VE, 94 percent, for three doses for critical
- 3 illness and death out to a median of 60 days follow-up.
- So, in summary, we saw similar patterns for VE
- 5 across age groups during Omicron, with limited
- 6 protection, especially for two doses, against infection
- 7 but strong protection of two doses, and even stronger
- 8 protection of three doses against the most severe
- 9 outcomes, including hospitalization, MIS-C, and
- 10 critical illness and death. While it was too early to
- 11 assess three dose protection for adolescents, and
- 12 children 5 to 11 years of age are not yet recommended
- 13 for a booster, we are likely to see similar patterns
- 14 for younger age groups for the third dose. I want to
- 15 acknowledge the individuals shown here on this slide,
- 16 and I'm happy to take any questions. Thank you.
- 17 DR. ARNOLD MONTO: Thank you so much for a
- 18 very clear presentation. I really liked your summary
- 19 slide, which brings it all together. Questions from
- 20 our group. Let's see. Let's look at our list. We
- 21 have hands raised by Dr. Levy.

- 1 DR. OFER LEVY: Thank you for that
- 2 presentation. Very helpful. A (audio skip) when we
- 3 compare outcomes such as infection (audio skip) what
- 4 extent are we able to correct behavioral differences
- 5 (audio skip) in terms of wearing masks or social
- 6 distance (audio skip) have they been applied to these
- 7 analyses?
- 8 DR. RUTH LINK-GELLES: Sure. So (audio skip)
- 9 individual (audio skip) one that is difficult to do in
- 10 any (audio skip) the (audio skip) one that I showed for
- 11 (audio skip) a little bit of the bi-(audio skip) that
- 12 platform (audio skip) those things might effect
- 13 vaccination (audio skip) and the VISION Network (audio
- 14 skip) hospitalization platform (audio skip) analysis
- 15 score includes a number of things (audio skip) than
- 16 things that (audio skip) change by behavior (audio
- 17 skip) control for, I wouldn't say it's (audio skip)
- 18 bias could remain there.
- 19 DR. ARNOLD MONTO: Dr. Marasco.
- DR. WAYNE MARASCO: Can you hear me?
- DR. ARNOLD MONTO: Yes.

- 1 DR. WAYNE MARASCO: Hi. So, when we measure
- vaccine effectiveness, you're really not -- the
- 3 denominator there of knowing what the difference in
- 4 levels of immunity are between those that become
- 5 infected and those that do not really needs to be, I
- 6 think, fleshed out a bit more because you have vaccine
- 7 responsiveness, but you don't have the correlate that
- 8 we really want to be able to know to look at vaccine
- 9 effectiveness at the decision to, one, to reboost, for
- 10 example.
- 11 So, I guess my question is we know that we're
- 12 going to get waning immunity. It sort of becomes more
- 13 steep at four to six months. That's the timeframe that
- 14 we're looking at. And is it all people in the
- 15 population that require it, or we learn from this
- 16 waning response what it takes to remain protected?
- DR. RUTH LINK-GELLES: Sure. So I think -- so
- 18 these studies are not designed to look at correlates of
- 19 protection or antibody response or anything like that.
- 20 We're looking purely here at a sort of real world
- 21 definition of infection or hospitalization or an urgent

- 1 care visit. I will say we did look -- and the VISION
- 2 data -- I'm not sure if we can put my slides back up,
- 3 but we did look -- in the VISION Network, they did a
- 4 first analysis that included immuno (audio skip).
- 6 have actual control over the -- oh, there we go. This
- 7 is the VISION analysis, and so if you look here, this
- 8 includes all adults. So it would include
- 9 immunocompromised as well as immunocompetent adults.
- 10 And you can see the apparent waning in that four plus
- 11 month period I think that you were referring to. The
- 12 thing here that I would caveat is that, based on the
- 13 timing of when this analysis was done and when boosters
- 14 were recommended for the general population, this is
- 15 going to pick up mostly vaccinated individuals who were
- 16 vaccinated before we had a booster recommendation for
- 17 the general population in place.
- 18 So, these would have been a lot of
- 19 immunocompromised individuals that were receiving a
- 20 third dose as part of a primary series as opposed to
- 21 healthy individuals getting a booster dose. And so,

TranscriptionEtc.

- 1 when they went back and looked at that -- and they
- 2 looked here just at immunocompetent individuals, so
- 3 individuals that we don't expect to have particular
- 4 conditions that would result in higher rates of vaccine
- 5 breakthrough -- they really didn't see any signal for
- 6 waning in two of the age groups and maybe a hint in one
- 7 of the age groups. And so, I think by doing these
- 8 analyses of the real world data, we're able to parse
- 9 out a little bit some of the different risk factors for
- 10 vaccine failure. But you're absolutely correct here.
- 11 We're not looking at correlates of protection.
- DR. WAYNE MARASCO: Thank you.
- DR. ARNOLD MONTO: Thank you, and, Dr. Link-
- 14 Gelles, isn't it true that some of the studies are
- 15 trying to collect blood spots and things like that to
- 16 help elucidate the question about correlates?
- 17 DR. RUTH LINK-GELLES: Yes, absolutely. We do
- 18 have a number of cohort studies that are much smaller
- 19 that do collect blood for antibody testing and looking
- 20 at correlates of protection. I didn't show any of that
- 21 data here. Most of our vaccine effectiveness platforms

- 1 are quite a bit bigger because of the power required to
- 2 look at real world vaccine effectiveness. For example,
- 3 the VISION Network has an extremely large catchment
- 4 area in the millions, and so they are not collecting
- 5 specimens. They're relying on electronic health care
- 6 records. But we do have separate data coming in from
- 7 cohort studies that's attempting to look at the
- 8 correlates of protection.
- 9 DR. ARNOLD MONTO: Thank you. We're going to
- 10 move on now to a sequential presentation from, first,
- 11 Dr. Sharon Alroy-Preis from Ministry of Health from
- 12 Israel and a presentation from Dr. Ron Milo from the
- 13 Weisman Institute in Rehovot. First, I believe, Dr.
- 14 Alroy-Preis.

- 16 ISRAELI EXPERIENCE WITH FOURTH BOOSTER DOSES IN OLDER
- 17 ADULTS

- 19 DR. SHARON ALROY-PREIS: Thank you. I hope
- 20 you hear me well. We're actually doing this
- 21 presentation together. It has been a joint venture by

- 1 the Ministry of Health and four academic institutions
- 2 in Israel. You see their logos above in this slide,
- 3 and it's been a pleasure to work with them and to look
- 4 at the data from different perspectives, validating one
- 5 another. I would like to say that both myself and Ron,
- 6 all the groups that we're representing have no
- 7 competing financial interests to disclose. Israel
- 8 Ministry of Health and Pfizer have a data sharing
- 9 agreement. However, in relation to all booster
- 10 effectiveness studies presented here that was done by
- 11 the four institutions, only the final results of the
- 12 analysis were shared. So it was not done with Pfizer.
- So, based on the rapid rise in Omicron cases
- 14 in the world that we saw in different countries, South
- 15 Africa and then England and then other places and the
- 16 early evidence of waning of the third dose protection
- 17 for confirmed infection in Israel, we decided to begin
- 18 fourth dose vaccination campaign on January 2nd. I
- 19 have to say that it was a combination of things, really
- 20 anticipating a surge of cases, knowing that our at-risk
- 21 population, the elderly population, of adults four

- 1 months old booster, that is waning off for confirmed
- 2 infection.
- 3 Knowing from previously that the second
- 4 booster was waning off for confirmed infection, and
- 5 then we saw severe disease and mortality -- and so we
- 6 decided to be proactive and offer a fourth dose for all
- 7 those who were 60 and above and medical staff that
- 8 received the third dose at least four months ago. What
- 9 we got is a compliance of about 50 percent in the 60
- 10 plus population. Out of nearly 1.2 million individuals
- 11 that were eligible, we had roughly 600,000 patients --
- 12 people getting the vaccines. I'm moving this to Ron to
- 13 explain the analysis of the vaccine effectiveness, and
- 14 then I'll continue with the safety data that we have.
- DR. RON MILO: Hello, everyone. So I hope you
- 16 can hear me okay. Our study analyzes data of about 1.2
- 17 million people eligible for fourth dose. Out of those
- 18 1.2 million people, about half -- about 0.6 million,
- 19 received the fourth dose. Another 0.6 million received
- 20 a third dose and were eligible but chose not to receive
- 21 the fourth dose. During the analysis period, which was

- 1 between January 10th and the beginning of March, there
- 2 were, unfortunately, a strong wave of infections in
- 3 Israel, leading to about 160,000 confirmed infections
- 4 and 1,700 severe hospitalizations by the NIH
- 5 definition. And, therefore, we have quite a lot of
- 6 statistics you can see here in order to analyze the
- 7 results.
- 8 Let me show you the main results that we have.
- 9 Let me know if there's any problems in hearing me or
- 10 seeing the results. In this slide, and starting from
- 11 the X-axis, this is the time since the fourth dose in
- 12 weeks, and on the Y-axis, you can see the protection as
- 13 a function of the time since the fourth dose, looking
- 14 at the rate ratio, which means those with three doses
- 15 and those with four doses. As you can appreciate, this
- 16 is rising such that at week four, you can see two
- 17 different analysis in terms of outcome.
- In blue, the results for confirmed infection
- 19 and in red, you can see the result of severe illness.
- 20 In both cases, we adjust for as many confounders as
- 21 possible to see the quadrant for some regression. It's

- 1 the same analogy that we also analyze in previous
- 2 studies published in The New England Journal of
- 3 Medicine, and this specific study has been published
- 4 yesterday by the New England. And we're adjusting
- 5 there for age, for gender, for sector, or for calendar
- 6 day, et cetera.
- 7 If you look at the blue dots, you can see that
- 8 it say it's week four, the two-fold creep in the rate
- 9 of infection for those with a fourth dose versus those
- 10 with a (audio skip) dose and (inaudible) waning
- 11 significantly by week eight.
- In contrast, when you look at severe illness -
- 13 and severe illness, just to reiterate, is based on
- 14 the NIH definition, which you can see at the bottom
- 15 right of the resting respiratory rate other than 30
- 16 breaths per minute. You can see the results about
- 17 oxygen saturation, et cetera. You can see that the
- 18 rate is about three- to four-fold lower pending a very
- 19 significant three-quarters decrease in the rate but
- 20 then, consistently around that value, week four, week
- 21 five, and week six.

- 1 We did not have data at that point. It was
- 2 submitted for peer review, for extra weeks. When we
- 3 have and we update this -- and I'll show you in a few
- 4 slides the more updated results with some extra weeks.
- 5 This was in terms of the factors of full reduction in
- 6 the rate. We also looked at the adjusted rate
- 7 difference, which is also entered, and you can see them
- 8 summarized in this table. It shows some related wave
- 9 of infections.
- 10 We had some significant difference both in the
- 11 three doses and, again, the internal control group, or
- 12 internal control group, like we just mentioned briefly,
- 13 is what you see here in terms of what happened on days
- 14 three to seven, which is a point in which the same
- 15 people have decided -- it's the group that decided to
- 16 take a fourth dose. But that was a time when they
- 17 still very minor in terms of confirmed infection, and,
- 18 therefore, we use them in terms of control group. But,
- 19 for both of them, we see the risk and full reductions
- 20 in rates and a significant change in the rate
- 21 difference.

- 1 Here, you can see an update with a few more
- 2 weeks, following week six, in terms of protection from
- 3 severe illness. I show you before up to week six, and
- 4 here you can also see week seven, week eight, and week
- 5 nine. You can see the overall rate was in the range of
- 6 somewhere between two-fold and four-fold, meaning
- 7 somewhere between the margin of vaccine effectiveness
- 8 of 50 percent and 75 percent beyond the protection
- 9 supplied by the third dose.
- 10 Finally, I want to present to you the results
- 11 of the protection against mortality in the age group,
- 12 for eligible ages 60 and above, again, with the same
- 13 methodology. And you can see that within that age
- 14 group, it has a margin of vaccine effectiveness of 76
- 15 percent versus the third dose, which is 4.2-fold
- 16 decrease. Again, the internal control group, we see a
- 17 55 percent margin of vaccine effectiveness, which is
- 18 about 2.2-fold.
- 19 The second group is somewhat lower for the
- 20 internal control group may very well arise also in the
- 21 vaccinee effect, meaning people that got all the way to

- 1 having a severe disease may actually decide not to take
- 2 the vaccine. Overall, we see somewhere between two-
- 3 fold and four-fold further protection against
- 4 mortality, beyond what was given by the (audio skip)
- 5 dose. Also, see at the bottom, the absolute rate
- 6 difference is per 100,000 risk days versus these
- 7 different groups. And now, we'll move on to discuss
- 8 the safety.
- 9 DR. SHARON ALROY-PREIS: Thanks, Ron. So,
- 10 this is the data -- the safety data. It is on all
- 11 those who received a fourth dose, so it's not just for
- 12 60 and above. As you can see, we had more than 750,000
- 13 people receiving the fourth (inaudible), it's the
- 14 purple bar.
- The indication was, as we said, 60 years and
- 16 older, individuals 18 years and older with
- 17 comorbidities and risk factors for developing severe
- 18 COVID-19 and also their caretakers, facility residents
- 19 and their caretakers, 18 and above, caretakers of the
- 20 elderly, obviously healthcare workers, and other
- 21 workers with significant occupational exposure who

- 1 wanted to get a fourth dose.
- I should mention that the rate of adverse
- 3 events here are per million doses, and we are capturing
- 4 adverse events that happen within 30 days of the
- 5 vaccine. It's updated until the end of March. And
- 6 limitation is most of the data that you'll see here is
- 7 based on passive surveillance. The only exception is
- 8 myocarditis, which we are still doing active
- 9 surveillance on, which means we are calling all the
- 10 hospitals asking them to report all cases of
- 11 myocarditis, related to the vaccine or not, to make
- 12 sure that we have a link that can be contributed to the
- 13 vaccine. So all the things that are under passive
- 14 surveillance could be subject to underreporting.
- 15 Here is the adverse events reported for the
- 16 fourth dose. We had 442 mild reports, 12 serious
- 17 reports, and you can see the definition of serious
- 18 reports -- the international definition of serious
- 19 reports by the FDA. I should mention that all
- 20 hospitalization and death reports following
- 21 vaccinations are examined by an independent clinical

- 1 work group that gets all the clinical data to establish
- 2 a connection to the vaccine.
- 3 So, this is the data in more detail. You see
- 4 that most of the reports we had are on more systemic
- 5 reaction, fever, feeling sick. That was the most part.
- 6 We had 12 serious adverse events that I will go into
- 7 detail in a minute and three other adverse events that
- 8 you see details at the bottom. One was atrial
- 9 fibrillation three days following the vaccination for a
- 10 person with cardiac disease; another case of suspected
- 11 myocarditis that did not require hospitalization and
- 12 was referred to MRI; a case of elevated LFTs that was
- 13 found on routine screening -- did not require
- 14 hospitalization.
- As you can see on the table on the right,
- 16 those are fourth dose vaccinees who were vaccinated
- 17 with Pfizer vaccine. So here is the detail on the
- 18 serious adverse events that we got. We had four cases
- 19 of pericarditis. You can see them detailed. Some of
- 20 those cases have risk factors for pericarditis. We had
- 21 a case of renal failure exacerbation for a patient with

- 1 chronic renal failure in days after the vaccine. We
- 2 had a case of mortality in a very complex individual
- 3 with dementia and multiple comorbidities, COPD,
- 4 diabetes, one day after the vaccine. We had a case of
- 5 pneumonia, CVA, a case of myocarditis that, as you can
- 6 see, had at admission evidence of active COVID-19
- 7 infection. So we are not sure exactly whether to
- 8 contribute the myocarditis to the vaccine or to the
- 9 infection that can cause myocarditis as well.
- 10 We had a case of a myocardial infarction in an
- 11 individual 60 to 64 years of age with no relevant
- 12 medical history, a case of acute kidney failure 21 days
- 13 after the vaccination, and a case of seizure in a
- 14 patient with a medical history of epilepsy. And here
- 15 is the summary of the myocarditis cases of all the
- 16 vaccines that were given. If you want to focus in on
- 17 the purple bars, this the fourth dose. We had two
- 18 cases. One of them was a case that did not require
- 19 hospitalization. And the other one, as I mentioned, is
- 20 a case that in addition to receiving the vaccine, also
- 21 had evidence of active COVID-19 infection upon

- 1 admission to the hospital. So this is, in general, the
- 2 data on the safety. And we will be happy to answer any
- 3 questions that you have, either on vaccine
- 4 effectiveness or our safety data.
- 5 MR. MICHAEL KAWCZYNSKI: Arnold, are you
- 6 ready?
- 7 DR. ARNOLD MONTO: Thank you. Right. Thank
- 8 you, as usual, for (audio skip).
- 9 DR. SHARON ALROY-PREIS: (Audio skip)
- 10 previously (audio skip).

12 **[BREAK]**

- 14 MR. MICHAEL KAWCZYNSKI: All right. Welcome
- 15 back to the 172nd Vaccines and Related Biological
- 16 Products Advisory Committee Meeting. Again, I think we
- 17 got everything all worked out now, so we shouldn't
- 18 hopefully have any more unscheduled breaks. And, with
- 19 that, we're going to reconvene, and I'm going to hand
- 20 it back to Dr. Monto. Dr. Monto, are you ready?
- 21 DR. ARNOLD MONTO: Right. Welcome back.

- 1 We're now going to go into a session which is going to
- 2 be looking at the future of SARS-CoV-2 variants from
- 3 various standpoints, modeling, and other devices and
- 4 mechanisms. First, we're going to hear a two-person
- 5 presentation. First is the reverse of the program,
- 6 we're going to hear first from Trevor Bedford from the
- 7 Hutch in Seattle, Washington. And then, from John
- 8 Beigel, from the NIAID, NIH. So, please, Dr. Bedford.

- 10 PREDICTING FUTURE SARS-CoV-2 VARIANTS: SARS-CoV-2
- 11 EVOLUTION UNDER POPULATION IMMUNE PRESSURE

- DR. TREVOR BEDFORD: Thank you, Dr. Monto.
- 14 I'm not seeing my slides up right now, are you seeing
- 15 my slides?
- 16 DR. ARNOLD MONTO: I am.
- DR. TREVOR BEDFORD: Michael, could you -- oh,
- 18 there we go. Okay. The slides are now up.
- 19 MR. MICHAEL KAWCZYNSKI: Yep. Give me one
- 20 second, I will give you your rights real quick here.
- 21 We just want to make sure we have everything all set up

- 1 there. One moment. Oh, I see what I -- you should
- 2 have it now and take it away.
- 3 DR. TREVOR BEDFORD: Yes, I do now. Thank
- 4 you. Okay. Thank you all for the introduction to
- 5 speak. I'm going to be talking about continuing SARS-
- 6 CoV-2 evolution. Briefly I want to disclose grant
- 7 support from the National Institutes of Health, and the
- 8 Howard Hughes Medical Institute to work in methods for
- 9 evolutionary forecasting.
- 10 As I think we're all aware, the pandemic in
- 11 2021 has been -- and forward has been characterized by
- 12 the repeated emergence of variants of concern viruses.
- 13 Here is just an example, Alpha and Gamma, where
- 14 basically what we've seen is a new kind of raft of
- 15 mutations all appearing on the same kind of genetic
- 16 background. That virus then rapidly spreads either
- 17 just locally or globally, displacing existing
- 18 diversity. And so we've seen this again and again.
- 19 These viruses tend to have been -- most of this
- 20 evolution has been in S1 domain. So, if we
- 21 characterize the amount of adaptive evolution across

- 1 the genome, we really see a focus in S1 in particular.
- 2 This is expected, both due to host adaptation as well
- 3 as immunoscape.
- So, if you look today at the different genetic
- 5 diversity that we've seen over the course of the last
- 6 two years, there's been a lot of genetic diversity
- 7 that's merged. We have the previous variants, Alpha,
- 8 Beta, Gamma, et cetera, Delta over here. Omicron is
- 9 actually these two fairly distinct sublineages of the
- 10 BA.1 and BA.2. At a genomic level, they're quite
- 11 distinct, as distinct as say, Beta and Gamma. But if
- 12 you look at the RBD spike, that is quite similar. So
- 13 it suggests you can suspect similar immune responses to
- 14 BA.1 and BA.2. What we've seen then is that over the
- 15 course of the pandemic, as these variants have emerged,
- 16 the more successful ones have rapidly swept through the
- 17 population and displaced existing diversity.
- 18 So we had a diversity of variants existing in
- 19 Spring 2021 that then Delta emerges and then sweeps to
- 20 basically fixation. So, by October/November 2021,
- 21 Delta's over 99 percent of all SARS-CoV-2 viruses. And

- 1 it had emerged in late Fall 2020, and so this time
- 2 period of just one year to basically reach fixation is
- 3 remarkably fast. The faster influenza, H3N2, takes
- 4 generally three to five years for a new strain to
- 5 emerge and sweep to fixation. And then, in this case,
- 6 Omicron was even quicker, where an emergence in early
- 7 October 2021 then gets to very high frequency in the
- 8 population in just the course of about four months --
- 9 three or four months.
- And now we're seeing BA.2 emerge and start to
- 11 increase in the BA.1 background. It appears to have
- 12 some intrinsic transmission advantage relative to BA.1,
- 13 even if immunity is actually quite similar. And so,
- 14 again, this is very rapid population dynamics relative
- 15 to, say, influenza H3N2. We can see that if we look
- 16 back at spike protein, we can kind of maybe understand
- 17 what's going on here -- where there's these three
- 18 phases of the pandemic so far where these kind of
- 19 early, quote, non-variant viruses don't have very many
- 20 mutations. And spike S1 we get this first tranche of
- 21 variants, Alpha, Beta, Gamma, Delta, with 8 to 10

- 1 mutations and this recent phase with Omicron, with 25-
- 2 30 mutations in S1 and kind of a large divergence here.
- Then, if we then just look at S1 through time,
- 4 and again try to kind of quantify what's going on, we
- 5 can see over the course of 2021 there's been about 12
- 6 substitutions per year in spike S1. This is ignoring
- 7 Omicron at the moment and just looking over the course
- 8 of 2021. And we can compare that to influenza, again.
- 9 So, here, I'm converting this into per amino acid
- 10 residue because, like S1, it's about twice the length
- 11 of the equivalent domain in influenza of HA1, but then
- 12 we see that SARS-CoV-2 so far has been evolving about
- 13 twice as fast as influenza H3N2, about four times as
- 14 fast as influenza H1N1, and about ten times as fast as
- 15 B-Victoria.
- 16 And this means that if we look here at
- 17 Omicron-like viruses, in just two years' time, since
- 18 the start of the pandemic, we have accomplished about
- 19 five years of equivalent evolutionary H3N2. So from
- 20 both an accumulation of mutations in S1 and from a
- 21 population dynamic standpoint, the evolution has been

- 1 remarkably fast so far. We can maybe expect it to slow
- 2 down as things stabilize a bit, but this to me suggests
- 3 a fairly adaptable and evolvable protein that is likely
- 4 to keep on evolving in response to selective pressure.
- So, with Omicron, as we've seen -- this is
- 6 just an example -- where the amount of vaccine
- 7 effectiveness drops substantially, especially with two
- 8 doses, we have a lot of immunoscape to vaccine-derived
- 9 immunity as well as infection-derived immunity. And
- 10 this caused these very large epidemics throughout the
- 11 world where we can see -- this is cases in blue of
- 12 Delta, red of Omicron, on a log scale here. And so we
- 13 can see that the Omicron epidemic comes in as
- 14 exponential growth, where we can see that as the
- 15 straight line on a log scale, across all of these
- 16 different geographies. This two to three day doubling
- 17 -- this very rapid exponential growth results in very
- 18 large epidemics in terms of caseloads that then start
- 19 to decline once there has been enough population
- 20 infected and Omicron-specific immunity in the
- 21 population because of these large epidemics.

- 1 So, to get a sense of scale for this, if we
- 2 look in the U.S. we see that we estimate that 9.8
- 3 percent of the population has confirmed cases of
- 4 Omicron through March 1st, with a large majority
- 5 accumulating after December 15th. We don't know this
- 6 number exactly for the U.S. We have it for the UK, but
- 7 the best guess for the U.S. is that we have a current
- 8 case detection rate of about one in five infections.
- 9 So this is almost 50 percent of the U.S. infected with
- 10 Omicron in the span of just 10 weeks, which is, again,
- 11 a remarkable number.
- 12 Comparing this to flu, seasonable influenza
- 13 infects perhaps 10 to 20 percent of the population in
- 14 the span of 20-ish weeks. So, again, a large attack
- 15 rate due to this very rapid evolution. Going forward,
- 16 what we can expect is I think that we can be pretty
- 17 confident that there will be additional kind of flu-
- 18 like, in quotations, drift within BA.1 and BA.2. So we
- 19 can expect an amino acid change of three appearing that
- 20 slightly escape from existing immunity.
- Those viruses will do better and will spread

- 1 locally and perhaps regionally and perhaps globally.
- 2 And that will get population turnover, like we do with
- 3 influenza, and further evolution within BA.1 and BA.2.
- 4 However, we can also -- perhaps given that we've seen
- 5 Omicron-like emergence events once, we can expect that
- 6 it could occur again. So, that Delta -- we could have,
- 7 for example, an emergence of an Omicron-like variant
- 8 from a Delta background that would then be wildly
- 9 divergent. And exactly assessing the probabilities
- 10 here is quite difficult, so basically all I think we
- 11 have to go on is that we've had one observation of a
- 12 large, kind of wildly divergent Omicron-like emergency
- 13 event in 2.35 years of virus evolution.
- And so this is compatible with a wide range
- 15 that we could have the true underlying rate of Omicron-
- 16 like emergence events every year -- about 1.5 years, or
- 17 it's compatible with, say, once every decade. And we
- 18 really don't know whether these wildly divergent
- 19 viruses will be a common feature or a rare feature of
- 20 endemic SARS-CoV-2 evolution. But playing this
- 21 uncertainty forward, we get this sort of distribution

- 1 where in the next 12 months we suspect that the more
- 2 likely scenario is not an Omicron-like emergence event
- 3 but perhaps a less likely scenario of Omicron-like
- 4 emergence.
- 5 So then, thinking forward of scenarios, again
- 6 we have a more likely scenario, which I think we should
- 7 be planning for, of evolution within Omicron BA.2 and
- 8 BA.1 to further increase intrinsic transmission and
- 9 escape from Omicron-derived immunity and, then, a less
- 10 likely scenario, where we have another wildly divergent
- 11 variant emerge that drives a large epidemic, the way
- 12 that we have just seen with Omicron.
- But in general, from everything we've seen,
- 14 again, it appears that S1 domain and SARS-CoV-2 is a
- 15 very adaptable beta protein, and we could expect a lot
- 16 of evolution going forward. And we should have methods
- 17 to keep up with this evolution in terms of vaccination
- 18 platforms. And with that, I will stop and hand it over
- 19 to John.

1 PREDICTING FUTURE SARS-COV-2 VARIANTS: SARS-COV-2

2 ANTIGENIC SPACE

- 4 DR. JOHN BEIGEL: All right. Thank you to Dr.
- 5 Fink and the FDA for inviting me and Dr. Monto for
- 6 inviting me to speak. So, before I start, for my
- 7 disclosures, as part of my federal official work at
- 8 NIAID I was involved with the Moderna Phase I study --
- 9 so with the mix and match study that included Pfizer,
- 10 Moderna, Janssen, and Novavax, and then also with a new
- 11 study called COVAIL that I'll talk about today that
- 12 also includes industry partners such as Moderna.
- So, given the uncertainties that Dr. Bedford
- 14 described, taking the next point to be challenging.
- 15 And I think until we know more, we have to understand
- 16 how to react to the new strains. So what I want to do
- 17 in the next few minutes is just talk about how we're
- 18 viewing the antigenic space, how we are thinking about
- 19 tackling the knowns around Omicron but also other
- 20 antigenic areas. Work by NIAID collaborators and a
- 21 group called SAVE and others used neutralization assays

- 1 coupled with what's called antigenic cartography to
- 2 describe the antibody response.
- And it's important that these maps are just
- 4 visualization tools. All it does is take
- 5 neutralization data, but it helps visualize antigenic
- 6 space. It's helps to visualize risk. And it really
- 7 helps us understand how to address this problem. The
- 8 antigenic cartography and antigenic landscapes are
- 9 common tools for influenza. Just -- many VRBPAC
- 10 members know this, but just to make sure we're all on
- 11 the same page, I just want to spend a minute describing
- 12 what this visualization tool is. For antigenic
- 13 cartography, you basically take a cohort. You do
- 14 neutralization titers to multiple strains. So in this
- 15 scenario they did the mRNA 1273. They looked at
- 16 neutralization titers. Then you determine a distance
- 17 from the highest titer, and you determine that
- 18 dilutions. And that equates to a distance, and you
- 19 plot that distance on a map.
- 20 And you let the computer -- and you do this
- 21 for every single sample, and you let the computer go

- 1 through. And it starts to triangulate where the
- 2 antigens and where the sera line up. And then you take
- 3 additional groups and, in this case, convalescent serum
- 4 and, again, you do the titers to multiple strains. And
- 5 you put it on an antigenic map, and you repeat that as
- 6 needed to address all the questions. And you start
- 7 developing this very complex map where all these
- 8 strains and sera are triangulated, and you start seeing
- 9 the relative distance between these. The map only
- 10 reflects relative distance and relative dilutions. But
- 11 you can also add to that landscape, and that landscape
- 12 shows titers across the variants to inform titers, but
- 13 also starts informing areas of vulnerability.
- 14 That landscapes are -- you can plot individual
- 15 landscapes, and you can plot that over time.
- 16 Landscapes are consolidated to a GMT to understand -- a
- 17 geometric mean, to understand the cohorts. And you can
- 18 start looking at different cohorts as needed. The work
- 19 by Derek Smith -- and that's most of the data I've
- 20 shown so far -- they've been able to look at these
- 21 landscapes to these different cohorts. And you start

- 1 seeing the -- in the upper left, the mRNA 1273 sera
- 2 looks very different, and it kind of tapers as you get
- 3 towards Omicron. But then, if you look at the 351
- 4 sera, it's a very different profile. And then you look
- 5 at the 617.2 sera, and again, it's a very different
- 6 profile, really high towards Delta, really low back
- 7 towards Beta. Again, you start visualizing where the
- 8 cross-neutralization titers might exist.
- 9 So, if we target Omicron, it assumes Omicron
- 10 recurrent or drift from Omicron. And that might be the
- 11 most likely, but there's also other antigenic spaces
- 12 that we worry about. And the scenario here, in the
- 13 upper right, is there might be a new antigen that -- a
- 14 new virus and a new antigen that maps towards Beta. So
- 15 that's significantly far from Omicron, almost as far as
- 16 back to prototype, but it's really close to things
- 17 we've seen before, Beta. And the same scenario at the
- 18 bottom, where it's Delta. So significantly far from
- 19 Omicron, significantly far from prototype. And there's
- 20 the possibility that the emerging viruses are going to
- 21 be in this area.

- 1 So the question is how do we use the variant
- 2 vaccines to target these different antigenic spaces?
- 3 So to try to address this we've developed a
- 4 study called the COVAIL Study for the COVID Variant
- 5 Antibody Immunologic Landscape Trial. And it's a
- 6 population -- and it's a population of people that
- 7 received a primary and a booster. It can be
- 8 homologous, heterologous. It's age greater than 18.
- 9 They're stratified by age. It's any infection status,
- 10 those that are infected or not, but stratified by
- 11 infection. And they are randomized to one of six arms.
- 12 And those six arms are in the top right and reflect
- 13 five different strategies of different vaccine
- 14 candidates, either prototype or variant or a mixture of
- 15 the variants. And then there's also arm three, which
- 16 is a slightly different question, which is a two-dose.
- 17 So does it take one-dose or two-dose to try to
- 18 antigenically convert somebody and form that landscape
- 19 in a direction that we want.
- This study just began enrolling last week.
- 21 We've got -- we're planning 24 sites, and early

- 1 responses for a given variant and vaccine might
- 2 increase across the landscape. And we've seen that in
- 3 other studies where you see a general increase. And,
- 4 again, it might drift in one direction, but a general
- 5 increase across the landscape. But then the later time
- 6 points we anticipate would show a differential
- 7 response. And, again, I just sort of came up with
- 8 these hypothetical landscapes. But you can see that
- 9 they might be quite different, so in the event that
- 10 there's a new variant, or maybe when there's a new
- 11 variant, we can test that sera. And you can really say
- 12 that that vaccine that was used in the bottom left,
- 13 that hypothetical vaccine three, is really targeting
- 14 more towards Delta and not towards this new variant and
- 15 is not the strategy what we want.
- But then you can start seeing how we can use
- 17 this data with the different vaccines and start
- 18 understanding how to modify that landscape and target
- 19 certain antigenic areas. So, just to wrap it up, we
- 20 think there is likely to be continued evolution for the
- 21 SARS-CoV-2 virus. As Dr. Bedford pointed out, it could

- 1 be evolution within Omicron. It could be another
- 2 Omicron-like emergent event any place in that map.
- 3 Ideally we learn to pick vaccine strains based on
- 4 anticipated evolution, but we're not there yet. Until
- 5 then we need to understand how to use available
- 6 vaccines, the prototype to variant and alone or in
- 7 combinations to modify antibody responses and target
- 8 the different antigenic spaces. Thanks.
- 9 DR. ARNOLD MONTO: Thank you, both. Thank
- 10 you, John. Thank you, Trevor. We're going to have
- 11 just a few minutes to try to catch up for these two
- 12 speakers. We may be able to have a more general
- 13 discussion after the next two presentations because
- 14 they're all related to the same issues. Hands raised,
- 15 if I can recognize them. Mike, unless I'm missing it,
- 16 I don't see any hands raised.
- 17 MR. MICHAEL KAWCZYNSKI: All right. Dr. Rubin
- 18 is first.
- 19 DR. PRABHAKARA ATREYA: Yes.
- DR. ARNOLD MONTO: Okay. It's not showing.
- 21 DR. PRABHAKARA ATREYA: Yeah, it is in the

- 1 middle, Dr. Rubin, Dr. Offit, and Hayley Gans in that
- 2 order.
- 3 DR. ERIC RUBIN: Thanks Mike and Prabha.
- 4 Those were very interesting presentations. Thank you
- 5 both. I guess the question is we don't really have a
- 6 great, very specific level of antibody that correlates
- 7 highly with protection. Dr. Beigel, when you have
- 8 those very complex figures, it's hard to know where on
- 9 that surface that you're drawing protection is
- 10 occurring. That does make it very difficult to
- 11 interpret these results. We know what kind of an
- 12 antibody response can be generated. We just don't know
- 13 if it works.
- 14 DR. JOHN BEIGEL: I think it's a reasonable
- 15 criticism, if you will. I didn't highlight it, but
- 16 there was a great plane across the middle that
- 17 represented an IV50 (phonetic) and we could really set
- 18 that anywhere. You're right. We don't have -- I mean,
- 19 we do know there's some correlates for neutralization
- 20 titers. It's not perfect, but we do know the risk
- 21 starts going up as those titers get lower. So we can

TranscriptionEtc.

- 1 set that plane to 50. We can set that to 100 and start
- 2 understanding as those landscapes are drifting in that
- 3 area and as the emergent viruses in that area. That's
- 4 probably not the strategy that we would want.
- 5 DR. ARNOLD MONTO: Okay, Dr. Offit.
- 6 DR. JOHN BEIGEL: For some reason, I can't
- 7 hear you.
- 8 DR. ARNOLD MONTO: -- with the hands raised.
- 9 DR. PAUL OFFIT: Thank you. Thank you Trevor
- 10 and John for that presentation. My question, I guess,
- 11 is in line with Dr. Rubin's question, which is have you
- 12 looked or are you interested in looking at T cells,
- 13 specifically T-helper cells, cytotoxic T cells?
- Because really, if we're talking about
- 15 protection against serious illness, which is the goal
- 16 of this vaccine, that may be the better correlate. And
- 17 you'd like to know to what extent these viruses are
- 18 drifting in terms of those what have been today
- 19 conserved epitopes that are being recognized by T-
- 20 helper cells or cytotoxic T cells. I think it's been
- 21 an unappreciated part of the immune response in terms

- 1 of study.
- DR. JOHN BEIGEL: Yeah, it's a critical point,
- 3 and I didn't go through all the details for the sake of
- 4 time. But we are selecting TBMCs and anticipate to do
- 5 a lot of T cell work and B cell work just to the points
- 6 you've raised.
- 7 DR. PAUL OFFIT: Thank you.
- 8 DR. ARNOLD MONTO: Dr. Marasco, did you have
- 9 your hand raised, or is it from before?
- 10 DR. WAYNE MARASCO: Can you hear me? So,
- 11 Trevor and John, thank you. My question really is to
- 12 John's experimental design. John, do you expect to be,
- 13 with that approach, to broadening the sort of memory
- 14 cell response from the earlier strain to be able to
- 15 capture the latter strain? Or is this more one of
- 16 being able to elicit new memory cells into the immune
- 17 memory response?
- 18 DR. JOHN BEIGEL: Yeah. The short answer is I
- 19 don't know which one we will get. The ideal response
- 20 is exactly what you said that you'd run it and you
- 21 actually flatten that landscape and that you're not

TranscriptionEtc.

- 1 longer sort of drifting down towards Omicron. But you
- 2 can actually flatten it, and you can cover more. Now,
- 3 whether that's a realistic expectation, I don't know.
- 4 And that's why we do the study. And, also, whether it
- 5 takes one dose or two doses to do that, I don't know.
- 6 And that's why we built in a two-dose arm. So, I hope
- 7 that we would be able to broaden the landscape, but I
- 8 don't think we know enough about how to immunogenically
- 9 shift people's immune response yet.
- DR. ARNOLD MONTO: Thank you, doctor. Dr.
- 11 Gans. Final question before we move on.
- 12 MR. MICHAEL KAWCZYNSKI: Dr. Gans, do you have
- 13 your phone muted?
- DR. PRABHAKARA ATREYA: Dr. Gans, we can't
- 15 hear you.
- DR. ARNOLD MONTO: We can't even see you.
- 17 Okay. We're going to have to move on because of the
- 18 press of time. Next we're going to have a, again, a
- 19 two-person presentation "Modeling of Future U.S. COVID
- 20 Outbreaks." Dr. Murray and Dr. Mokdad will be talking,
- 21 one after the other, and then we'll have the questions

1 afterwards. Dr. Murray.

2

3 MODELING OF FUTURE U.S. COVID-19 OUTBREAKS

4

- 5 MR. MICHAEL KAWCZYNSKI: Dr. Murray?
- DR. CHRISTOPHER MURRAY: Yes. I'm not sure I
- 7 understand your format here. Am I supposed to share
- 8 the slides, or is somebody at your --
- 9 MR. MICHAEL KAWCZYNSKI: Nope, they're already
- 10 up there. If you want to go ahead, and you should see
- 11 two little arrows below the slide deck.
- DR. CHRISTOPHER MURRAY: It says nothing being
- 13 shared at my end. Here, maybe they're coming up.
- MR. MICHAEL KAWCZYNSKI: Oh, hold on. And go
- 15 ahead and turn your camera on as well, sir.
- 16 DR. CHRISTOPHER MURRAY: All right. I
- 17 unfortunately don't see anything on your platform.
- 18 MR. MICHAEL KAWCZYNSKI: That's okay. You
- 19 should see two little arrows at the bottom of the
- 20 PowerPoint, sir.
- 21 DR. CHRISTOPHER MURRAY: Yeah, I don't even

- 1 see the PowerPoint at all. Maybe it's coming. There's
- 2 just a circle going around and around.
- 3 MR. MICHAEL KAWCZYNSKI: Go ahead and start.
- 4 I'll move your slides for you, sir.
- 5 DR. CHRISTOPHER MURRAY: All right. Let me
- 6 see if I can find my slides. This presentation is
- 7 about how we model at IHME the pandemic in the U.S. and
- 8 elsewhere. The slides say, if you can see them -- if
- 9 you advance, I'm going to cover first -- how the sort
- 10 of first step in how we think about this, and that is
- 11 how we understand past the sort of basic model
- 12 structure. If you go to model slide three, the main
- 13 insight that we have to have is to capture waning
- 14 immunity. And so, if you're looking at slide three --
- 15 MR. MICHAEL KAWCZYNSKI: Sir, you actually
- 16 stopped sharing the slides. I have to reload them.
- 17 DR. CHRISTOPHER MURRAY: I never --
- 18 MR. MICHAEL KAWCZYNSKI: That's okay. That's
- 19 okay. That's okay. I will reload your slides here,
- 20 because you -- it's quite all right. And, again,
- 21 what's the name of your slide deck, sir?

- 1 DR. CHRISTOPHER MURRAY: I think it is "IHME
- 2 COVID Forecast April 6."
- 3 MR. MICHAEL KAWCZYNSKI: IHME, is that what
- 4 you said?
- 5 DR. CHRISTOPHER MURRAY: Yes.
- 6 MR. MICHAEL KAWCZYNSKI: Bear with me. There
- 7 we go. Here it comes. Just, sir, at the bottom of the
- 8 slide deck, when it comes loading in, you will see two
- 9 little arrows when it comes up. Just going to take a
- 10 moment now.
- 11 DR. CHRISTOPHER MURRAY: Is it showing at your
- 12 end?
- MR. MICHAEL KAWCZYNSKI: Yes, it's right here,
- 14 sir. I'll put it back in for you.
- DR. CHRISTOPHER MURRAY: Okay.
- MR. MICHAEL KAWCZYNSKI: Do you see it now?
- 17 DR. CHRISTOPHER MURRAY: There we go. I can
- 18 see it now.
- 19 MR. MICHAEL KAWCZYNSKI: There we go.
- DR. CHRISTOPHER MURRAY: Thank you. All
- 21 right. So this shows the model structure that we use

- 1 to capture the waning of immunity and to model both
- 2 vaccination boosters, as well as the competition
- 3 between variants within the transmission dynamics
- 4 model. Moving on, next slide. We have been using sort
- 5 of meta-analysis of all the available studies, the
- 6 waning of immunity, both for severe disease,
- 7 hospitalization, and death, as well as for preventing
- 8 infection.
- 9 Those are -- as everyone on this call knows,
- 10 they're quite different. This is the waning from the
- 11 available data on preventing infection and likewise for
- 12 severe disease. So those go into our modeling
- 13 framework. Critical to understanding Omicron and where
- 14 we see future directions is this understanding of the
- 15 immunoscape. And so, we have a matrix in the modeling
- 16 between the different variants, and then we have a
- 17 distribution from a similar meta-analysis of the waning
- 18 of natural immunity or infection-acquired immunity.
- 19 So that's the sort of very high order
- 20 background. Now, the most important part of making
- 21 sense of where we are is the analysis of past infection

- 1 because our analysis, or anybody's analysis, is going
- 2 to make sense of transmission looking back. And the
- 3 way we do that is we triangulate using cases,
- 4 hospitalizations, and deaths, using seroprevalence data
- 5 to directly measure the infection detection rate.
- 6 Trevor Bedford, for example, mentioned the 20 percent
- 7 figure. We try to estimate this empirically from
- 8 state-specific and country-specific comparisons of
- 9 seroprevalence data.
- 10 The seroprevalence data also has to be
- 11 corrected for the waning of sensitivity of antibody,
- 12 depending on the specific antibody test. And so that's
- 13 also part of this analysis. And then we ought to
- 14 differentiate antibody positivity that's related to
- 15 vaccination from not. This all comes together in this
- 16 example here for Colorado. Green, on the top row, is
- 17 cases and then the infection detection rate in the
- 18 middle panel, and then the top right is infections that
- 19 we estimate. And then the middle row is the same
- 20 analysis based on hospitalization, and then the bottom
- 21 row is the analysis based on deaths. And so we try to

- 1 triangulate on these to come up with past infection.
- 2 That tells us about, however you want to think
- 3 about it in terms of a transmission's dynamics model,
- 4 what is effective R or in our framework, the Beta T
- 5 coefficient that is multiplied by the number of
- 6 infection sources at any given moment in time. Similar
- 7 analysis for Illinois. Bottom line here is that these
- 8 -- at least in the U.S., when you do this sort of
- 9 triangulation, it all fits together rather well. Some
- 10 country's that is not the case. But for the U.S. the
- 11 triangulation on the different sources gives us a very
- 12 coherent view of past transmission.
- 13 And you can see how much more dramatic the
- 14 Omicron wave has been in terms of infection, up on the
- 15 top right there, than previous waves of different
- 16 variants. Now another thing that goes into our
- 17 assessment, which matters for some states in the U.S.,
- 18 matters a lot for other countries, is to correct for
- 19 under registration of death. The way we do that is we
- 20 analyze excess mortality. I won't go into the method.
- 21 This was published The Lancet a few weeks ago. But

TranscriptionEtc.

- 1 basically we are trying to validate the assessment of
- 2 COVID using registered deaths by week and, in some
- 3 cases, like Russia, by month.
- When you do that, you get these excess death
- 5 rates, and I only put up this map that's from the paper
- 6 to point out that within the U.S. excess death rates
- 7 have very tremendously sort of North/South gradient,
- 8 with intriguingly the lowest excess death rates in the
- 9 U.S. being North Dakota and the highest in the sort of
- 10 states on the southern border. Now, this is the crude
- 11 excess death rate, and because the infection fatality
- 12 rate is so strongly related to age more than any other
- 13 cause of death that we know about, it's interesting to
- 14 look at the next slide, which is the standardized
- 15 mortality ratio.
- 16 So this is observed excess mortality divided
- 17 by expected based on your age structure. And when you
- 18 look at that, then suddenly COVID starts to look more
- 19 like most other diseases. Once you correct for age,
- 20 the excess death rate starts to look highest in low and
- 21 middle income countries. But compared to other high

- 1 income countries, some of the southern parts of the
- 2 U.S. have fared poorly. And then amongst the middle
- 3 and to high income countries, Eastern Europe and Russia
- 4 have done extremely poorly. So this all goes into our
- 5 analysis of the past and into how we model out the
- 6 future trajectory.
- 7 So, for modeling Omicron, as Trevor mentioned,
- 8 very rapid invasion. And this is documented now in
- 9 multiple, multiple locations. And so we know, in terms
- 10 of modeling Omicron, that the transmission as well as
- 11 the immunoscape are quite high. We also have to build
- 12 in the reductions in vaccine effectiveness for both
- 13 infection and severe disease as a function of each of
- 14 the vaccines. Now, not every cell in this matrix is
- 15 known, so we have to approximate the full matrix of all
- 16 the different vaccines in the world against the
- 17 different variants for infection and severe disease
- 18 using an algorithm that uses which of these cells we
- 19 actually have direct observations for and then,
- 20 essentially, sort of estimation by analogy for some of
- 21 the missing vaccines.

- I won't belabor the Omicron attributes.
- 2 Trevor covered them, but fortunately for us all, given
- 3 how transmissible Omicron is, the fact is it's quite a
- 4 bit less severe than Delta has been a blessing. And,
- 5 of course, it's critical to the future forecast if we
- 6 think the next variants are from the Omicron lineage,
- 7 or we're going to see a reversion back to higher
- 8 severity disease. Okay. So where do we get what's
- 9 forecasts? We're at the tail end of the global Omicron
- 10 wave, with the exception of China.
- 11 We suspect that we'd be modeling that there
- 12 would be takeoff of the Omicron wave in China, sort of
- 13 every week next week. That has not happened because of
- 14 the successful pursuit of the Chinese lockdown and
- 15 triple testing strategy that got rid of Omicron in
- 16 Beijing in February. And we'll see if they're
- 17 successful in Shanghai or not. But we do think that
- 18 China will pursue this aggressive zero COVID strategy
- 19 at least until October. And so probably we won't see
- 20 the massive Omicron wave that will eventually come
- 21 until later in the year for China.

- 1 The BA.2 wave that has spread through some,
- 2 but not all, countries in Europe seems to last about
- 3 three weeks. So if it does come to the U.S. probably a
- 4 short shoulder or rise. Our model suggests it will not
- 5 have much impact. And the reason we see this
- 6 differentiation in different countries of Europe and
- 7 also likely in the U.S. has to do, we believe, with how
- 8 much past infection with other variants and then how
- 9 many people have been infected with Omicron already.
- 10 And more than 60 percent of the world has been
- 11 infected with Omicron already, and in the U.S. that
- 12 number is about 50 percent, at least in our models. So
- 13 here's the forecast. These are the short-range
- 14 forecasts out four months. We do run our models later
- 15 in the year, and first let me talk to you about four
- 16 months. The infections here we do not see, as you can
- 17 see on this graph, a much, if any, of the BA.2 bump.
- 18 There will be a small bump in reported cases. You can
- 19 barely make it out on the right-hand side for reported
- 20 cases. And then we expect numbers without a new
- 21 variant, or just evolution of Omicron -- we see in our

- 1 long-range models a winter return.
- 2 And so we get the -- what Trevor was
- 3 describing, that seasonable pattern, due to waning
- 4 immunity and seasonality. And that shows up in the
- 5 longer range models. The way we've been trying to
- 6 handle the evolution of new variants, which I won't
- 7 show, is made up scenarios. What if a new variant does
- 8 emerge in May or June or July with different
- 9 attributes? And perhaps not surprisingly, when we do
- 10 that you can get large outbreaks, depending on the
- 11 variant, and considerable mortality if you revert back
- 12 to a severe variant. The key factor that we have yet
- 13 to build into the models that we are working on is the
- 14 availability of antivirals, particularly Paxillin,
- 15 because that will change not the course of the
- 16 transmission but changes our estimates of death shown
- 17 on the next slide.
- 18 So here's our predicted mortality. Again,
- 19 we're seeing dropping to very low levels in the summer.
- 20 It starts to come back next winter. And then, when we
- 21 run these sort of random scenarios around variant

- 1 evolution, you can see a return of mortality. But even
- 2 a Delta-like severity with Omicron level of
- 3 transmission, or more than Omicron, if antiviral access
- 4 is heavily scaled up, we get a much smaller mortality
- 5 peak than we saw, for example, with Delta last year or
- 6 the winter peak last year.
- 7 So that's sort of the main findings. Here's
- 8 the summary around the BA.2 shoulder. It's very
- 9 interesting when you dig into the details in Europe of
- 10 which countries have had these BA.2 shoulders versus
- 11 not, and as seen in the previous graphs, we don't
- 12 currently forecast much of a BA.2 wave. But it's
- 13 certainly a very real possibility given what we've seen
- 14 in some countries in Europe, but our models don't want
- 15 to have a BA.2 wave.
- Now, one way to look at this is our, estimated
- 17 from within the model, susceptibility to Delta and
- 18 Omicron, where we are peaking at about 80 percent right
- 19 now protection against Omicron and likely slightly
- 20 lower numbers for BA.2 but not much. And then you go
- 21 into this period of slow but steady decline because of

- 1 waning immunity. And so that's how we will see, as we
- 2 go later into the year, the return of transmission
- 3 based on these modeled estimates of susceptibility.
- 4 Last on the slides here is nothing that Trevor has not
- 5 already covered. But we do, in our various
- 6 hypothetical scenarios, see the critical factor that
- 7 alters the trajectory of death is access and
- 8 availability of antivirals. That really makes a very
- 9 big difference.
- 10 And then, this endogenous response, even
- 11 though we don't expect governments to impose much in
- 12 the way of mandates politically going forward, to the
- 13 extent that we've seen in the last two years,
- 14 considerable behavioral adaptation by those at risk by
- 15 wearing masks and social distancing -- when you add
- 16 that in you will get some dampening of transmission if
- 17 there is a major new variant, even without the
- 18 implementation of mandates. If you do have mandates
- 19 return, then of course you get more dampening. Those
- 20 are other sort of factors that will influence the
- 21 trajectory quite considerably. And then I think, if

- 1 both Ali and I will -- I've made the presentation for
- 2 both of us, and Ali and I can answer questions as
- 3 needed. Thank you.
- 4 MR. MICHAEL KAWCZYNSKI: All right. Arnold,
- 5 you there?
- 6 DR. ARNOLD MONTO: I am. I can -- right?
- 7 Here I am.
- 8 MR. MICHAEL KAWCZYNSKI: There you go.
- 9 DR. ARNOLD MONTO: Thank you for compressing
- 10 the two presentations into one. We're open for
- 11 questions. If I can find where the hands are raised in
- 12 this -- okay. I found it. Dr. Bernstein. I think
- 13 you're muted. At least, we don't hear you.
- DR. HENRY BERNSTEIN: Can you hear me now?
- 15 Sorry.
- 16 DR. ARNOLD MONTO: Yes.
- DR. HENRY BERNSTEIN: Yes? Sorry.
- 18 DR. ARNOLD MONTO: Yes.
- 19 DR. HENRY BERNSTEIN: The presentation's very
- 20 intriguing. My question relates to slide number 20.
- 21 You talked about 80 percent use of masks, and I was

- 1 wondering what impact you anticipate in broadening
- 2 mitigation factors along that path?
- 3 DR. CHRISTOPHER MURRAY: So, in previous
- 4 variants, the scaled up use of masks had a really
- 5 profound effect. What we have seen in the models is
- 6 that transmissibility of Omicron is so high the
- 7 prevalence in the community is so high that the
- 8 marginal effect at the community level of mask use has
- 9 been relatively small. That is not necessarily the
- 10 case for future variants, but right now, essentially
- 11 everybody who was susceptible, at least in the way we
- 12 model things, ends up getting infected over some period
- 13 of time.
- Now, in reality, there's probably -- we've
- 15 seen pockets of people -- well, we've seen this
- 16 phenomenon -- like, look at New Zealand -- where you
- 17 finally get in a vaccinated but unexposed population --
- 18 you get widespread community transmission, and then you
- 19 get a very long, sustained peak. And the only way to
- 20 account for that is that you're not reaching a peak
- 21 where all susceptible's are being infected and coming

- 1 down. You are progressively reaching different groups
- 2 of people that are susceptible, which does suggest that
- 3 even with Omicron that there is some effect of sort of
- 4 social distancing, as groups emerge from being very
- 5 cautious. But at least the way we model the sort of 50
- 6 percent reduction at the individual level of
- 7 transmission, it doesn't have a large scale population
- 8 impact for Omicron.
- 9 DR. HENRY BERNSTEIN: Thank you.
- 10 DR. ARNOLD MONTO: Thank you. Dr. Meissner,
- 11 the last question for this group of presentations.
- 12 DR. CODY MEISSNER: Thank you, Dr. Monto.
- 13 Thank you for the series of interesting presentations.
- 14 My question relates to why we're seeing so many
- 15 variants. Based on the fact that SARS-CoV-2 has a
- 16 proofreading function in the polymerase complex, that
- 17 is not found so frequently in other RNA viruses. Why
- 18 do we see mutations that are in SARS-CoV-2 that are
- 19 greater than what we see in influenza, in view of the
- 20 fact that there is this activity?
- 21 And then, secondly, one of my biggest concerns

- 1 has been that there would be a mutation in the receptor
- 2 binding domain that would enable the virus to attach to
- 3 non-ACE2 receptors because the other coronavirus -- not
- 4 all coronavirus -- the seasonal coronaviruses don't all
- 5 -- and even, I think MERS, doesn't bind to ACE2. So,
- 6 if that happens, that's really a problem because our
- 7 current vaccines won't work. And this thing will surge
- 8 once again. Do you have any comments about that,
- 9 please?
- 10 DR. CHRISTOPHER MURRAY: That sounds like a
- 11 question more for Trevor Bedford on the evolutionary
- 12 front than for us. But Ali or Trevor?
- DR. ARNOLD MONTO: Trevor, are you still on?
- DR. TREVOR BEDFORD: I'm sorry, I had missed
- 15 the question. Can you repeat it?
- 16 DR. CODY MEISSNER: Yes. In view of the
- 17 existence of the proofreading frame that's part of the
- 18 polymerase complex of SARS-CoV-2, why are we seeing
- 19 more mutations than we are with other viruses? Because
- 20 I think you said it several times what we see with
- 21 influenza, which I don't believe has that activity.

- 1 And then, secondly, is there a risk of a new mutant
- 2 with a capacity to bind to non-ACE2 receptors and
- 3 thereby escaping the immunity induced by the current
- 4 vaccines?
- 5 DR. TREVOR BEDFORD: Yeah. Thank you. So,
- 6 for the first question, yeah, that's definitely a theme
- 7 in 2020 for thinking about the rate of evolution that
- 8 we see with SARS-CoV-2. The per nucleotide mutation
- 9 rate of coronaviruses is low, lower than, say,
- 10 influenza. But much more of the rate of evolution is
- 11 dictated by the adaptability, the evolvability,
- 12 robustness of the kind of protein at question. And so
- 13 it appears that spike one -- S1 of spike protein is
- 14 quite adaptable, and so that seems to be much more
- 15 what's driving the rate of evolution.
- And we see this across influenza HAs as well
- 17 for what appears to dictate the rate of evolution
- 18 between H3N2, H1N1, and the B viruses. In terms of the
- 19 second part of the question, I don't -- there is shifts
- 20 at an evolutionary timescale of receptor binding, but
- 21 in terms of what we'd expect for SARS-CoV-2, I think

- 1 that we can be pretty confident that will stick with
- 2 ACE2, at least for a decent amount of time.
- 3 DR. CODY MEISSNER: Thank you.
- 4 DR. ARNOLD MONTO: Thank you. And now,
- 5 switching gears, it's my pleasure to introduce Dr.
- 6 Kanta Subbarao, who is now the head of the
- 7 collaborating center -- WHO collaborating center in
- 8 Melbourne, Australia, where it is the middle of the
- 9 night. Thank you, Kanta. She is formerly at NIH and
- 10 at CDC. So very familiar with what we do in the U.S.
- 11 Kanta.

12

- 13 WHO PERSPECTIVE ON VARIANTS FOR COVID-19 VACCINE
- 14 COMPOSITION TECHNICAL ADVISORY GROUP ON COVID-19
- 15 VACCINE COMPOSITION (TAG-CO-VAC)

16

- 17 DR. KANTA SUBBARAO: Thank you very much.
- 18 Arnold, can you give me a thumbs-up if you can hear me?
- 19 DR. ARNOLD MONTO: I can hear you.
- DR. KANTA SUBBARAO: Perfect. Great. So,
- 21 thank you very much, and as Arnold said, it is the

- 1 middle of the night. It's 2:25 in the morning. But I
- 2 am here to talk to you a little bit about what the WHO
- 3 is doing and thinking about the impact of the emergence
- 4 of variants on the SARS-CoV-2 vaccines.
- 5 The WHO put together a new advisory group, and
- 6 so TAG stands for Technical Advisory Group. That was
- 7 called together to make recommendations to the WHO on
- 8 the methods to assess the impact of variants of concern
- 9 on vaccines; to provide an interpretation of available
- 10 evidence on the effect of variants of concern on
- 11 vaccines, including, but not limited to, vaccine
- 12 effectiveness; and to recommend to the WHO for each
- 13 COVID vaccine platform adaptations, if any needed, so
- 14 that the vaccines continue to provide net protection
- 15 against variants of concern.
- The background is very familiar to all of you.
- 17 I've heard parts of today's presentations but not all
- 18 of them. But certainly we all know that the evolution
- 19 of SARS-CoV-2 could substantially impact the COVID-19
- 20 pandemic, as it has done, and may require adaptations
- 21 of the currently available countermeasures.

- 1 Adjustments of the vaccine composition may be needed to
- 2 optimize the performance of the COVID-19 vaccines
- 3 because of the emergence of variants of concern. And
- 4 the regular production and review of available evidence
- 5 is critical to assess the impact of the variants of
- 6 concern on countermeasures to issue timely
- 7 recommendations on potential modifications and to
- 8 identify need for further research and investigation.
- 9 The WHO periodically organizes consultations
- 10 with independent groups of experts. And so this TAG-
- 11 CO-VAC, which is the Technical Advisory Group on COVID-
- 12 19 Vaccine Composition, has been put together to review
- 13 the evidence and analyze the implications of emerging
- 14 variants of concern on the performance of COVID-19
- 15 vaccines. So the TAG-CO-VAC may recommend to the WHO
- 16 adaptations of vaccine composition from a global public
- 17 health perspective and guided by principles of
- 18 equitable access.
- 19 There's a lot of information sharing and
- 20 cross-reporting among WHO expert committees. A few of
- 21 them are listed here. The Expert Committee On

- 1 Biological Standardization, ECBS, provides
- 2 recommendations and guidelines for the manufacture,
- 3 licensing, and control of blood products and related in
- 4 vitro diagnostic tests, biotechnology products, and
- 5 vaccines, along with the establishment of WHO
- 6 biological reference materials.
- 7 The Strategic Advisory Group of Experts on
- 8 Immunization, SAGE, is charged with advising the WHO on
- 9 overall global policy and strategies ranging from
- 10 vaccines and technology, research and development, to
- 11 delivery of immunization and its linkages with other
- 12 health interventions. The Strategic and Technical
- 13 Advisory Group for Infectious Hazards, called STAG-IH,
- 14 provides independent advice and analysis to WHO Health
- 15 Emergencies Program on infectious hazards that may
- 16 cause a potential threat to global health security.
- 17 And there's the TAG-VE, that has been meeting
- 18 regularly since 2020, but got the new name of TAG-VE,
- 19 that periodically monitors and evaluates the evolution
- 20 of SARS-CoV-2 and assesses if specific mutations and
- 21 combinations of mutations alter the behavior of the

- 1 virus. If you look at the COVID-19 Advisory Group
- 2 landscape at the WHO, it's a multidisciplinary
- 3 mechanism of external experts. And the aim is to
- 4 monitor and assess SARS-CoV-2 variants and to evaluate
- 5 their impact on countermeasures, including vaccines,
- 6 but also therapeutics, diagnostics, and effectiveness
- 7 of public health and social measures.
- 8 So from the virus standpoint, the monitoring
- 9 and surveillance falls to the TAG-VE, which I just
- 10 mentioned. On the vaccine side, there's collection of
- 11 research, evidence, and assessment that's been done for
- 12 the entire duration of the pandemic by the R&D
- 13 Blueprint for Epidemics. Many of you would have been
- 14 on their calls and webinars -- and the TAG-CO-VAC,
- 15 which is this new committee that I mentioned and then,
- 16 on the policy side, the vaccine implementation and
- 17 policy side with SAGE.
- The TAG-CO-VAC is comprised of 18 members.
- 19 I'm sure you can't read all of the fine print, but
- 20 there is a link up there. And I'm chairing this
- 21 committee for the first year, and David Wentworth from

- 1 the CDC is the vice-chair of the committee. We have
- 2 members from all over the world with a very broad range
- 3 of expertise. They're virologists. They're
- 4 epidemiologists. They're people with vaccine expertise
- 5 and vaccine implementation expertise. And we're
- 6 supported by a secretariat at the WHO.
- 7 We have formed two subgroups to make some of
- 8 the presentations to the full committee. There's a
- 9 subgroup that's looking at developing the framework
- 10 that will describe the decision-making process of TAG
- 11 and the data that we will require. And we have a
- 12 strain selection subcommittee that is specifically
- 13 looking at the immunogenicity and cross protection data
- 14 to inform any proposed updates to vaccine composition.
- 15 This is how we plan to approach this. There will be
- 16 proposals made by these subgroups to the full
- 17 membership of TAG-CO-VAC for review and endorsement.
- 18 And the WHO facilitates direct exchanges between TAG-
- 19 CO-VAC and other WHO advisory groups, the regulatory
- 20 authorities, and COVID-19 vaccine manufacturers.
- 21 We're very cognizant of the fact that we're in

- 1 this effort together and that each -- that the vaccine
- 2 manufacturer, the regulatory authority, both play very
- 3 important roles. And the role of this committee is
- 4 primarily to address strain composition. So we've made
- 5 two interim statements over the last -- since the
- 6 beginning of the year. The first was posted on the
- 7 11th of January, and the key messages are that the
- 8 current vaccines protect well against severe disease
- 9 and death. And that is (audio skip) protection against
- 10 severe disease and death is more likely to be preserved
- 11 than protection against infection, or symptomatic
- 12 infection with the current vaccines for the COVID
- 13 Omicron variant.
- And we really need to urge and accelerate
- 15 broader access to primary vaccination, particularly for
- 16 groups at greater risk of severe disease because the
- 17 current vaccines do provide good protection against
- 18 severe illness and death. But we do need to encourage
- 19 the development of COVID-19 vaccines that will have an
- 20 impact on prevention of infection and transmission, in
- 21 addition to protecting against severe illness and

- 1 death.
- 2 And until such vaccines are available, and as
- 3 the virus continues to evolve, the composition of the
- 4 current COVID-19 vaccines may need to be updated to
- 5 ensure that there is -- that we achieve protection. So
- 6 the options that we listed to consider would be a
- 7 monovalent vaccine that elicits an immune response
- 8 against the predominant circulating variant. But this
- 9 option faces the challenge of the rapid emergence of
- 10 SARS-CoV-2 variants and the time needed to develop or
- 11 modify the new vaccine. And certainly I heard the
- 12 previous talk about the predictions of when and where
- 13 the next variant might emerge from.
- 14 The next option would be a multivalent vaccine
- 15 containing antigens from different SARS-CoV-2 variants
- 16 of concern. And, of course, ultimately a pan SARS-CoV-
- 17 2 vaccine, a pan-sarbecovirus vaccine would be a more
- 18 sustainable, long-term option that would, we would
- 19 hope, effectively be variant-proof.
- We also put out one more statement at the
- 21 beginning of March where we highlighted the substantial

- 1 uncertainties around the evolution of SARS-CoV-2 and
- 2 the challenges in updating these vaccines with the
- 3 paucity of data on variant-specific vaccines. We
- 4 continue to review available data to optimize vaccine
- 5 mediated protection against prevalent circulating
- 6 variants of concern. But we really still strongly
- 7 support the urgent and broad access to current vaccines
- 8 for primary series and booster doses, especially for
- 9 groups at risk of developing severe disease.
- 10 And we continue to encourage COVID-19 vaccine
- 11 manufacturers that are developing variant-specific
- 12 vaccines to share their data on the performance of
- 13 these vaccines. We're interested in the magnitude and
- 14 the breadth and the longevity of the immune responses
- 15 generated by the variant-specific vaccines. I think
- 16 that is my last slide, so I will turn it back to Arnold
- 17 and see if you have any questions.
- DR. ARNOLD MONTO: Kanta, since you have been
- 19 involved in influenza strain selection for a number of
- 20 years, could you tell us the process, in a few words,
- 21 which is impossible -- but I know you can try -- about

- 1 how influenza strains are selected as a template for
- 2 the process that might be going on here in the future?
- 3 DR. KANTA SUBBARAO: Yes. So, when we talked
- 4 about how to approach this in the TAG-CO-VAC,
- 5 essentially we can use as a model the one vaccine that
- 6 is updated regularly, and that's influenza. Or we
- 7 could do what we do for influenza and tailor it
- 8 specifically to SARS-CoV-2. So there's some nuances
- 9 that will be different from what we can do with
- 10 influenza, and we can talk about those. But what we do
- 11 for influenza is that we have a wealth of information
- 12 on genetic sequence data.
- We also have a lot of information about
- 14 antigenic characteristics. So we typically have data
- on about 3- to 5,000 viruses that are characterized
- 16 antigenically to see how they relate to reference
- 17 viruses which will include viruses that were
- 18 circulating in the previous year, as well as
- 19 representative viruses from the different genetic
- 20 clades that are circulating. We're looking to see if
- 21 there's antigenic change because, after all, the

- 1 vaccines work by inducing immunity, and so the genetic
- 2 sequence data alone is not sufficient. We really need
- 3 to see how much antigenic relatedness there is.
- 4 We take that information, and our colleagues
- 5 at Cambridge University generate antigenic cartography
- 6 maps so that, as you've seen in one of the previous
- 7 presentations -- so it's a way to visualize the antigen
- 8 change. In addition to those, we have epidemiologic
- 9 data. So, essentially, if we have a new variant that
- 10 is antigenically distinct, and we see it occurring in
- 11 more than one area, typically more than one continent,
- 12 causing significant disease, that would be a trigger
- 13 for consideration. And then last but not least -- and
- 14 so, the antigenic characterization is done using ferret
- 15 antisera. But we take advantage of the fact that when
- 16 we inoculate ferrets intranasally with an influenza
- 17 virus, they make a very monospecific or strain-specific
- 18 response, so we can take advantage of ferret antisera
- 19 to characterize antigenic differences.
- 20 And I will get to what we can do, how this
- 21 would all play into COVID-19. So, in addition to these

- 1 data, we also collaborate with two groups of modelers,
- 2 who help us predict, and Trevor, who gave one of the
- 3 previous talks, is one of the people that participates
- 4 in these discussions and provides us their advice on
- 5 where they think -- the prediction of which clade will
- 6 dominate. So all of this information is taken together
- 7 to -- and we also, very importantly, have to have a
- 8 virus that can be shared around the world with vaccine
- 9 manufacturers to generate a vaccine.
- 10 When we move this kind of discussion to COVID-
- 11 19, to SARS-CoV-2, there are a couple of notable
- 12 differences at this time. We have much less antigenic
- 13 characterization data than we do genetic sequence data.
- 14 We need that genotype to phenotype link, and like heard
- 15 in the previous presentation and certainly know from
- 16 around the world that there is an attempt to do that.
- 17 We need to make sure that we get very broad coverage of
- 18 surveillance around the world, which is done by the
- 19 Global Influenza Surveillance and Response System For
- 20 Influenza.
- 21 So we need to be sure because we don't know in

- 1 fact whether we will have region-specific differences
- 2 or regional differences or global decisions. The third
- 3 thing that we know for influenza is that at least in
- 4 the temperate climates it's a winter disease. And so
- 5 we can actually make a vaccine strain selection
- 6 decision even in advance of the next year's epidemic.
- 7 We don't know what the seasonality of SARS-CoV-2 would
- 8 be yet. So it's difficult to sit here and say that
- 9 there is a certain timeline in which we can make these
- 10 decisions. So there are a lot of moving parts, but I
- 11 think we will use what we know about influenza as the
- 12 basis to try to put together some of the information
- 13 that we need.
- 14 DR. ARNOLD MONTO: Just to monopolize for a
- 15 minute more, how does this relate to the actual
- 16 manufacturing of the vaccine in terms of having to
- 17 produce four components, typically, rather than just
- 18 one, and the timeline?
- 19 DR. KANTA SUBBARAO: Right. That's an
- 20 interesting question. I mean, I should have said also
- 21 that with influenza we currently have three -- at least

- three vaccine platforms -- three or four vaccine
- 2 platforms. We've got inactivated vaccines that are
- 3 made in embryonated eggs. We have inactivated vaccines
- 4 made in cells, recombinant vaccines, and life
- 5 attenuated vaccines. With COVID-19 vaccines we've got
- 6 quite a few more platforms. And, in some cases, it's
- 7 just a single gene, and in other cases it's the whole
- 8 virus.
- 9 So, with influenza, each of the four
- 10 components in a quadrivalent vaccine, or three
- 11 components in a trivalent vaccine, are manufactured
- 12 independently and then mixed together. We don't know
- 13 what -- and this will be a matter for manufacturers and
- 14 regulators to figure out what the implications are for
- 15 a COVID-19 vaccine if it needs to have more than one
- 16 component because, of course, anytime a multivalent
- 17 product is made, we have to be sure that each of the
- 18 components are as immunogenic as they would have been
- 19 alone.
- DR. ARNOLD MONTO: And the manufacturing, in
- 21 theory, waits until the recommendations are made.

- DR. KANTA SUBBARAO: True. With influenza --
- DR. ARNOLD MONTO: In theory.
- 3 DR. KANTA SUBBARAO: -- the manufacturers
- 4 previously would be (inaudible) systems, we keep in
- 5 close touch. They have regular discussions with them
- 6 and bring them up to date on all of our deliberations.
- 7 And there is a date after the strain selection meeting
- 8 where all of the manufacturers are informed at the same
- 9 time about what the recommendation is. Now, having
- 10 said that, the recommendation is in fact just a
- 11 recommendation, and each country's national authority
- 12 makes a decision as to what their vaccine for their
- 13 country should be.
- But the manufacturers are notified at the same
- 15 time. So our hope with TAG-CO-VAC is to work with
- 16 manufacturers and keep them updated on our discussions,
- 17 as we do for influenza. But the manufacturers making
- 18 COVID-19 vaccines are not all familiar with the
- 19 influenza vaccine process. So there's a lot of sort of
- 20 discussions going on to make sure that it's transparent
- 21 and clear and a partnership.

- DR. ARNOLD MONTO: Okay. Thank you for my
- 2 protracted questioning. But Dr. Wharton.
- 3 DR. MELINDA WHARTON: Thank you. That was
- 4 really interesting, and I'm delighted to know that
- 5 under WHO's leadership this is going on. We're all
- 6 trying to think forward under these conditions of just
- 7 massive uncertainty. And, yet, in temperate climates I
- 8 think we are anticipating we may be dealing with a
- 9 winter wave and want to anticipate it appropriately and
- 10 maybe prepare for it. Is it your expectation that the
- 11 Technical Advisory Group will be making some kind of
- 12 recommendation this summer related to potentially a
- 13 strain change or a bivalent vaccine or some other
- 14 changes in current vaccine strategy, or is it too early
- 15 to say?
- DR. KANTA SUBBARAO: Yeah, so I can't give you
- 17 a timeline, but we are certainly discussing the issues
- 18 around the Omicron and BA.1 and BA.2 very actively. I
- 19 must say that when the committee was formed, we were
- 20 talking about Delta and then suddenly had to drop that
- 21 discussion and move on. And then we were discussing

- 1 BA.1, and now there's BA.2. So it is very hard to have
- 2 enough data, as all of you know, the concern with --
- 3 you could say we need a vaccine against the prevalent
- 4 virus, but we do know that the Wuhan-based vaccines
- 5 have performed very well.
- 6 And it's only the Omicron strain that is
- 7 really an antigenic variant compared to the Alpha was
- 8 antigenically very close to Wuhan, and Delta showed
- 9 some full reduction in neutralization. But it's not
- 10 anywhere near what Omicron is. And that we could see
- 11 on the antigenic cartography. So Omicron is really in
- 12 a place by itself.
- 13 And what we know from influenza is that if we
- 14 go down into a very strain-specific vaccine, that there
- 15 is a risk that if a variant emerges from the original
- 16 part of the phylogenetic tree, we might be further away
- 17 from the breadth of protection that we're getting from
- 18 the Wuhan-based vaccines. So we're in the midst of
- 19 those deliberations, and all I can say is stay tuned.
- 20 We'd love more data, so anyone who has data we'd
- 21 welcome it.

- 1 DR. ARNOLD MONTO: Thank you. Dr. Berger.
- DR. ADAM BERGER: Hi, hopefully you can hear
- 3 me at this point. Thank you so much for the
- 4 presentation. It was really helpful to hear what the
- 5 WHO is thinking. I've been thinking of what
- 6 (inaudible) today is to consider factors and data that
- 7 should be used to determine whether and when not to
- 8 (audio skip).
- 9 Based on the data that was presented earlier
- 10 by both CDC and Israel though, it appears that vaccine
- 11 efficacy against hospitalization and critical illness
- 12 remains high, between 78 and 88 percent, if I'm
- 13 remembering my numbers correctly, across all age
- 14 groups, even though confirmed infection protection
- 15 wanes over the same time period.
- 16 Since these factors are somewhat going in
- 17 divergent directions, I wonder if you might talk about
- 18 WHO's thinking about the use of infection itself in
- 19 making a positive case determination. You noted
- 20 specifically that until -- I'm trying to remember to
- 21 remember the words that were up on the screen. Until

- 1 vaccines can be developed that prevent infection that
- 2 the composition may need to be updated. So I assume
- 3 that WHO has made a determination that infection rates
- 4 really should be playing a factor here. Would you mind
- 5 just commenting on the thought process behind that?
- DR. KANTA SUBBARAO: Yeah, so I'm afraid that
- 7 I didn't -- I probably missed a few of the words in
- 8 your question. But let me rephrase what I think I
- 9 heard, and you can give me a nod if I've got it right.
- 10 But I thought you were asking what the WHO's thinking
- 11 is about prevention of -- the use of vaccines to
- 12 prevent infection. Is that correct?
- DR. ADAM BERGER: Correct.
- DR. KANTA SUBBARAO: Yeah. Speaking for --
- 15 you know, essentially paraphrasing what our committee
- 16 has been discussing is the sense that although the
- 17 vaccines that we currently have provide some protection
- 18 against infection -- and they certainly did with the
- 19 original Wuhan strain and the Alpha variant -- they are
- 20 not providing robust protection against infection with
- 21 Omicron and that we recognize the need for next

- 1 generation vaccines in which that protection is
- 2 improved.
- 3 But the current vaccines that we have today
- 4 are quite effective in preventing severe illness and
- 5 death. And so we are saying that we should recognize
- 6 the role that our currently available vaccines can play
- 7 in primary immunization around the world and booster
- 8 immunization as well.
- 9 DR. PAUL BERGER: Right. I guess the question
- 10 I have on that is so in that case where you're having
- 11 divergence, where you've got -- the infection rates
- 12 aren't necessarily being controlled, in fact, the
- 13 immunogenicity is waning. The severe effects of COVID
- 14 are being managed well by the current vaccines, so
- 15 should infection be a factor that dictates whether or
- 16 not to change current vaccine composition is really
- 17 what I'm trying to get at. And I thought from what you
- 18 were saying that WHO has made a positive determination
- 19 that infection rate itself should be a factor in making
- 20 a change to the composition. So is that correct, or
- 21 did I get that a little bit off?

- DR. KANTA SUBBARAO: No, I think that is what
- 2 we said in the interim statement. How much that single
- 3 factor will weigh compared to antigenic change and the
- 4 other possibilities of what happens in a prime and
- 5 unprimed population and what sort of breadth we would
- 6 get with the new vaccine component compared to what we
- 7 have with the current, all of those are factors that go
- 8 into the discussion. So the infection alone is not the
- 9 full factor, but it is a factor that we would consider.
- 10 We would all like to see less infection and less
- 11 transmission.
- 12 DR. PAUL BERGER: I think we are in definite
- 13 agreement with that. Thank you.
- DR. ARNOLD MONTO: Thank you. Thank you,
- 15 we're going to have to move on. I'm going to make a
- 16 proposal, Dr. Marks and Dr. Fink, that we next hear
- 17 from Dr. Johnson, and then we will have the open public
- 18 hearing, which is fixed in time, and then listen to Dr.
- 19 Weir's comments at 2:30. Does that sound reasonable?
- DR. PETER MARKS: Dr. Monto, that certainly
- 21 sounds reasonable to me, and I think it'll make things

- 1 flow very reasonably.
- 2 DR. DORAN FINK: Yes.
- 3 DR. ARNOLD MONTO: Okay. Thank you. So now
- 4 we will hear from Dr. Robert Johnson at BARDA, who will
- 5 be speaking to us on perspectives of varying vaccine
- 6 development and production. Dr. Johnson.

7

- 8 COVID-19 VACCINE STRAIN SELECTION POINTS TO CONSIDER
- 9 FOR MANUFACTURING TIMELINES

10

- 11 DR. ROBERT JOHNSON: Good afternoon. Thanks
- 12 so much. As Dr. Monto indicated my name is Robert
- 13 Johnson, and I am the director of medical
- 14 countermeasures program at the Biomedical Advanced
- 15 Research and Development Authority, or BARDA, within
- 16 the Office of the Assistant Secretary for Preparedness
- 17 and Response, or ASPR. I should mention my standard
- 18 conflicts of interest. I have no financial conflict of
- 19 interest.
- However, during the past two years, as a
- 21 Department of Health and Human Services federal

- 1 employee and as part of my federal official duties and
- 2 work at BARDA, I have been involved in all aspects of
- 3 managing COVID-19 vaccine development procurement and
- 4 distribution. So, as I mentioned, BARDA sits within
- 5 ASPR, who is designated as the Health and Human
- 6 Services lead for coordination of the COVID-19
- 7 response. Over the last two years, BARDA has partnered
- 8 with manufacturers and funded the large scale
- 9 manufacturing, development, and/or procurement of six
- 10 COVID-19 vaccines, including the three vaccines that
- 11 currently are available in the United States under
- 12 emergency use authorization.
- Based on this experience, as well as the
- 14 experience according to seasonal epidemic influenza
- 15 vaccine development, we were asked to address the
- 16 question of when does the strain selection need to be
- 17 made in order to ensure product availability in the
- 18 fall. Unfortunately, there is no one specific date or
- 19 day, nor is it actually a single decision that has to
- 20 be made. Rather the date will be specific to each
- 21 manufacturer and the timing of several regulatory

- 1 decisions that will need to be made.
- 2 And that's what I'd like to discuss over the
- 3 next 15 minutes. You've heard, actually -- just as a
- 4 Q&A from the last discussion, you heard a lot of the
- 5 assessment that there's similarities between what we do
- 6 with influenza vaccine in terms of strain collection
- 7 every year and how it could potentially be applied to
- 8 decision-making process for COVID-19 vaccines. I
- 9 wanted to spend the first of this presentation
- 10 outlining the key aspects of the influenza annual
- 11 strain selection process that allows us to get to the
- 12 end state. And the end state isn't just beginning
- 13 production of product. It's actually having sufficient
- 14 product available to meet the demand for that influenza
- 15 vaccination season.
- I then want to spend a few minutes talking
- 17 about some of the decisions that will be needed in
- 18 order to reach a similar outcome with the COVID-19
- 19 vaccine. Most of you are aware of this general
- 20 schematic which shows the general process used in the
- 21 vaccine space to develop and/or replace a new antigen

- 1 to an existing vaccine. The process is really the same
- 2 for any vaccine. It's just -- as was mentioned before,
- 3 for influenza vaccine this is something that happens on
- 4 an annual basis, which is a little bit different. What
- 5 I want to discuss a little bit more then, as we move
- 6 forward, is focusing a little bit more on influenza.
- 7 So, for influenza, overall the process
- 8 balances that we're looking to do is hold off making a
- 9 decision as long as possible -- and Kanta did a great
- 10 job of talking about what happens over time during that
- 11 course of a year as we work to identify the strain --
- 12 and then, on the other hand, needing to make that
- 13 strain selection decision in time for manufacturers to
- 14 produce the vaccine. One of the things that I want to
- 15 mention is that, from a manufacturing perspective, at
- 16 the time of that strain selection for influenza it's
- 17 not a cold start.
- 18 Because of the well-defined process that we
- 19 have, manufacturers are often able to do a lot of
- 20 preparation prior to the actual strain selection
- 21 decision from the FDA in terms of the composition of

- 1 the vaccine. And it's important to remember also in
- 2 addition to the manufacturing aspects, as Kanta also
- 3 covered, there's a lot of work being done behind the
- 4 scenes to select the seeds, characterize them so that
- 5 once that FDA decision is made about what strains are
- 6 going to be part of the vaccine, manufacturers are
- 7 immediately able to start producing vaccine.
- Finally, when we think about timelines, it's
- 9 important to recognize two aspects from this curve. So
- 10 this curve right here is a seasonal influenza vaccine
- 11 uptake looking at administrations on a weekly basis.
- 12 And two important points from this. The first is that
- 13 as you'll see here, when we look at when the
- 14 recommendation is made for your seasonal influenza
- 15 vaccine and when manufacturers start to produce
- 16 product, which is really they start producing and
- 17 releasing product in the August timeframe, you still
- 18 have several weeks before we start entering that peak
- 19 demand phase, so that's additional time that can be
- 20 used to produce additional vaccine.
- The second thing that's really important to

TranscriptionEtc.

- 1 remember here is that this curve looks very similar
- 2 year to year. There's some slight differences, but in
- 3 general, it looks the same. And this represents the
- 4 demand. From a manufacturing perspective, one of the
- 5 most important things to understand is what is the
- 6 demand. And so, by having this known curve that looks
- 7 similar season to season, they're able to do a lot of
- 8 forecasting for their production cycle. As we look at
- 9 the overall process for the annual influenza vaccine
- 10 production cycle, what pieces come together to make
- 11 them work?
- 12 There's really three main streams here. The
- 13 first is the production platform. All production
- 14 platforms right now that are making influenza vaccine
- 15 really well-described and characterized. Manufacturers
- 16 have a lot of experience with them. They're all
- 17 capable of being used in a multivalent presentation.
- 18 So a lot of similarity -- certainly differences, but
- 19 also similarities from a general manufacturing
- 20 understanding perspective. Second is the ability to
- 21 match the supply and demand situation. So, as I

- 1 mentioned previously, there's a well understood demand.
- 2 There's well understood production timelines and yields
- 3 from these manufacturing platforms.
- And then, when we couple that with the
- 5 excellent surveillance system that was discussed
- 6 earlier, manufacturers are able to time their
- 7 production well so that they have that vaccine ready
- 8 for that fall manufacturing campaign. Finally, we have
- 9 a very well-understood regulatory policy pathway that
- 10 allows manufacturers to prepare well in advance,
- 11 understand when they need to start manufacturing and
- 12 what they need to make sure that their vaccine is
- 13 licensed in the late summer in time for the fall
- 14 influenza vaccine campaign.
- So, as we shift gears a little bit, let's look
- 16 at the current COVID vaccine landscape and what factors
- 17 impact potential timing of ability to produce vaccine
- 18 to support a fall vaccine campaign. So, as was
- 19 previously mentioned for the COVID-19 vaccines, we have
- 20 a lot of differences between platforms. And those
- 21 platforms, we have various levels of experience

- 1 manufacturing COVID with different COVID antigens, as
- 2 well as just manufacturing in general. Even within the
- 3 same platform it's important to remember that there a
- 4 lot of differences. Differences include the
- 5 manufacturing capabilities but also potential things
- 6 such as global demand, global orders that need to be
- 7 filled, and also the yields and the amount of product
- 8 that's used per dose.
- 9 So all of these are going to have a
- 10 significant impact on when a manufacturer needs to
- 11 start manufacturing in order to have that product
- 12 available in the fall. Finally, other factors that
- 13 will drive production timelines, level of testing to
- 14 support these strains, does the manufacturer have seed
- 15 banks available for the selected strains -- I'll talk
- 16 about that a little bit more -- the ongoing need to
- 17 produce prototype vaccine to vaccinate naïve
- 18 individuals, and finally, how much risk, if you will,
- 19 is a manufacturer willing to take on prior to have a
- 20 firm decision on what the strain composition is going
- 21 to be for the vaccine.

- 1 I'm going to talk a little bit more about a
- 2 couple of these key objects here in this next slide.
- 3 What I want to do briefly is a little bit of scenario
- 4 planning or look at this from an example's perspective.
- 5 We get back to the original question. When do you need
- 6 make a decision on a strain selection in order to have
- 7 enough product available in the fall for a vaccine
- 8 campaign? Let's make as an example two different
- 9 manufacturers. Each manufacturer right now --
- 10 manufacturers are doing a lot of work looking and
- 11 characterizing different strains, making different
- 12 banks, doing different clinical trials.
- 13 Let's say one manufacturer selects strain A,
- 14 and they're doing some work now. And then another
- 15 manufacturer selects strain B, and they're doing some
- 16 work. Let's say the decision is made next week that
- 17 the decision -- the vaccine composition would be strain
- 18 A and that in order to get a BOA or an EUA for that
- 19 vaccine you need to do a clinical trial. The company
- 20 that selected strain A and did the work on strain A,
- 21 they're going to be in pretty good shape. They're

- 1 going to be able to take that data that's coming down,
- 2 use that for their filing, and be comfortable moving
- 3 forward with large scale production.
- 4 The developer that focused on strain B now all
- 5 of a sudden is left really far behind. So when you
- 6 think about the timeline needed to make a seed, to
- 7 generate Phase I clinical trial data, in the best-case
- 8 scenario you're looking at 16 weeks. And so you look
- 9 at the calendar, and you can see that means that data
- 10 readout happens in late summer, which if the decision
- 11 is not to go ahead with large scale manufacturing till
- 12 that data comes down, will be too late to have product
- 13 available for an early fall vaccine campaign.
- 14 That's just one example of the many decisions
- 15 and many factors that are going to come into play when
- 16 we think about the timing to make a decision around
- 17 which strains are going to be a component of the
- 18 vaccine. So I wanted to wrap things up with these last
- 19 couple of slides here, expanding particularly on the
- 20 regulatory factors, besides the strain change, that
- 21 will impact timing of vaccine availability. This

- 1 figure here identifies six key decisions. By no means
- 2 is this an exhaustive list. These were just some of
- 3 the things in our experience to date that we think are
- 4 particularly of importance.
- 5 I want to call out three in particular. The
- 6 first will be in terms of who decides the strains and
- 7 how many strains for the vaccine. So getting back to
- 8 the earlier discussion around influenza, currently
- 9 there are trivalent and quadrivalents vaccines licensed
- 10 with the regulatory authorities determining which
- 11 strains are in each vaccine but individual
- 12 manufacturers determining if they have a trivalent or a
- 13 quadrivalent vaccine. When you think about COVID-19,
- 14 obviously if there's a decision to go with a bivalent
- 15 product, that has significant impact on product
- 16 availability and timing of that availability.
- So it's very important for manufacturers to
- 18 know early on where will they have flexibility to
- 19 decide their presentation and where will it be
- 20 determined by the regulatory authorities. Second thing
- 21 to look at is, as we think about an indication for a

- 1 fall boost, what's going to be the indication or the
- 2 recommendation for individuals that have not yet
- 3 received either the primary series or the first boost?
- 4 Are they going to be recommended to receive the vaccine
- 5 in the fall that's recommended for people that are
- 6 receiving their fourth or fifth dose? Or will they be
- 7 recommended to receive the current prototype of vaccine
- 8 strain? From a manufacturing capacity perspective as
- 9 well as planning, that's going to be a really important
- 10 decision.
- And then, finally, the third thing is how will
- 12 the label read in terms of timing for that
- 13 recommendation of the fall boost? And what I want to
- 14 do is just circle back to a slide I showed earlier with
- 15 another figure overlaid. So, as I mentioned, in red
- 16 you have seasonal influenza, vaccine demand over time,
- 17 and then what you have in blue is what we saw in terms
- 18 of vaccine demand for the COVID boost last fall. And,
- 19 as you'll notice, with that -- you'll recall with that
- 20 COVID booster recommendation, there was a
- 21 recommendation that -- essentially the kind of

- 1 recommendation tens of millions of people were eligible
- 2 for that boost.
- 3 So that caused a very rapid increase and
- 4 uptick in people receiving their vaccine, meaning that
- 5 you had to have significant amount of product available
- 6 at the time of that EUA and ACIP recommendation,
- 7 whereas, the influenza seasonal recommendation and
- 8 label, which is a little bit broader in terms of not
- 9 fitting a specific date relative to your previous
- 10 vaccination, you tend to see that more gradual lead up
- 11 to that peak vaccination.
- 12 And again, from a manufacturing perspective,
- 13 really important when you look at these curves and
- 14 there's about a difference of roughly four to six weeks
- 15 in terms of when you need to be having your maximum
- 16 amount of product available. And that's looking at
- 17 peak manufacturing time there in the August timeframe.
- 18 So understanding what that indication will look like
- 19 and how that's going to drive uptake is going to be
- 20 very important.
- So, in conclusion, while unfortunately I can't

- 1 tell you a specific date by which a strain change
- 2 decision needs to occur in order to have sufficient
- 3 product for a fall booster campaign, I hope I've
- 4 provided some insight into the underlying complexity
- 5 and the importance of providing insights, guidance and
- 6 decisions on these various issues as soon as possible.
- 7 I'm happy to take any questions. Thank you.
- 8 DR. ARNOLD MONTO: Thank you, Dr. Johnson.
- 9 Let me lead off by asking you to update us on work that
- 10 might have been going on already on bivalent vaccines
- 11 because we keep hearing the suggestion that given the
- 12 spread between Omicron and some of the other variants
- 13 we might be considering a bivalent vaccine.
- 14 DR. ROBERT JOHNSON: Yeah. The manufacturers
- 15 are working on a bivalent. I think the challenge is
- 16 that they're not necessarily all working on the same
- 17 category and the same types of bivalent. And so will
- 18 they have bivalent data? Are they getting experience
- 19 with how to make a bivalent product? I think yes. I
- 20 think though it is important for there to be some
- 21 alignment around kind of which ones should they be

- 1 focused on and which ones should they be looking at.
- DR. ARNOLD MONTO: Thank you. Okay. Dr.
- 3 Gans.
- 4 DR. HAYLEY ALTMAN-GANS: Thank you very much.
- 5 I had a question regarding your prediction of the
- 6 ability of these manufacturers -- I mean, they're not
- 7 all the same, and they're very variable also with
- 8 influenza. But if we have two circulating viruses that
- 9 have the same need -- obviously, we're more seasoned
- 10 with influenza -- what will be the capacity actually to
- 11 do both of these? And will there be then a different
- 12 timeline needed? And then the other one along Dr.
- 13 Monto's question, rather than these valents, what about
- 14 a universal or panvalent vaccine that's in the works?
- 15 DR. ROBERT JOHNSON: Yeah. So, in regards to
- 16 your first question, if I understood correctly, it was
- 17 the ability to make a bivalent product?
- DR. HAYLEY ALTMAN-GANS: No, it's the ability
- 19 to actually meet the needs for both influenza as well
- 20 as COVID. So if those circulate at the same time in
- 21 these countries.

- DR. ROBERT JOHNSON: So, appreciate that
- 2 question, so right now we don't envision that will be a
- 3 challenge. Certainly, there are -- from a supply chain
- 4 perspective, there are some shared components that, if
- 5 you look at manufacturing capacity where products are
- 6 made, and just in general we don't see that as being a
- 7 concern in terms of being able to produce the necessary
- 8 products. In terms of the question around the
- 9 universal product, yeah, I mean, I think that's
- 10 obviously something that would be great to have. And
- 11 once that's kind of developed and looked at, then we'll
- 12 be able to have a better handle on the manufacturing
- 13 capacity and what that will look like.
- 14 DR. ARNOLD MONTO: Thank you. Dr. Rubin.
- 15 DR. ERIC RUBIN: Thanks, Dr. Johnson, and this
- 16 is really very important to the questions being posed
- 17 to us today. I had a question about the different
- 18 technology platforms that are being used now, which are
- 19 obviously very different from influenza. How does the
- 20 mRNA technology compare to the viral vector vaccines
- 21 that are being (audio skip) now in terms of the

- 1 rapidity of manufacturing?
- DR. ROBERT JOHNSON: Sorry, when you say
- 3 rapidity, could you clarify what you mean by that?
- 4 DR. ERIC RUBIN: The time to actually having
- 5 product in a vial.
- 6 DR. ROBERT JOHNSON: Yeah. So, you know, I
- 7 think at the top level it's fair to say you can look at
- 8 the timing of kind of when product came out after COVID
- 9 was first discovered. Essentially if we look at that
- 10 sequentially, we see the mRNAs came out first followed
- 11 by the recombinant protein and then some of the viral
- 12 vectors. And I think at a top level, we would expect
- 13 to see something along those same lines continue going
- 14 forward.
- DR. ERIC RUBIN: But presumably we've learned
- 16 something since that time in terms of how most
- 17 efficiently to manufacture, how to make (audio skip).
- DR. ROBERT JOHNSON: Correct. The challenge
- 19 is that these different platforms simply have different
- 20 regulatory requirements, so some things are -- you can
- 21 only compress things so much for some of the testing

- 1 that has to be done as well as for some of the time
- 2 needed to identify the best -- you know, do the best
- 3 strain selection and those types of things. And
- 4 there's just inherent differences in the platform about
- 5 how quickly that can be done. So, certainly across the
- 6 board we have seen, and we will expect to see,
- 7 increases in things such as yield and efficiency. I
- 8 think from an overall timeline perspective, again,
- 9 something could always change, something unexpected,
- 10 but I would expect kind of that order to be about the
- 11 same.
- 12 DR. ARNOLD MONTO: Thank you. Dr. Meissner.
- DR. CODY MEISSNER: Thank you, Dr. Johnson. A
- 14 very interesting problem that you have coming up. I
- 15 just want to get your thoughts, I guess, about a couple
- 16 of points. Number one, it will depend on what platform
- 17 everyone decides to go forward with. That is, if it's
- 18 a messenger RNA platform, in a certain way that makes
- 19 it a lot easier than with the influenza vaccines, at
- 20 least that we currently use, most of which require
- 21 growth in embryonated hen's eggs. And the point is

- 1 that it takes about six months after the seed is
- 2 selected to make the finished product.
- But with a messenger RNA that's going to be a
- 4 much shorter turnaround time, isn't it? I mean, I
- 5 think we hear that the pharmaceutical folks can make a
- 6 new mRNA vaccine in a matter of days, or a week, and
- 7 will probably be able to fill the vials and distribute
- 8 that a whole lot quicker than they can with influenza.
- 9 And the other point is, that would be much safer.
- 10 Obviously, we wouldn't want any pharmaceutical company
- 11 to -- or we would hope they wouldn't have to grow up
- 12 enormous amounts of SARS-CoV-2 because it would present
- 13 a hazard for some people. The advantage of messenger
- 14 RNA platforms is appealing from a safety standpoint
- 15 too, I guess, as well as in terms of speed.
- And then the other question that you mentioned
- 17 and that you alluded to, how will you test these new
- 18 vaccines? With influenza, we have a reasonable
- 19 understanding of a serologic correlate of immunity.
- 20 Probably, even though it's not very good, we can
- 21 estimate it, and we can't with -- at least right now,

- 1 with SARS-CoV-2 vaccines. And so, how can -- I mean,
- 2 it's going to be so hard to make a new SARS-CoV-2
- 3 vaccine and say, oh, yeah, this one works, and we can
- 4 replace the existing one. So, anyway, I guess a lot of
- 5 interesting questions confronting you. I don't know if
- 6 you want to comment on any of those.
- 7 DR. ROBERT JOHNSON: Yeah, so appreciate that.
- 8 I'll comment quickly. I know we're running a little
- 9 short of time, but those are great questions. And so,
- 10 a couple things, so first, I should point out none of
- 11 the vaccines, at least the ones that BARDA has
- 12 supported and currently has EUA, utilized the live
- 13 virus. Even the recombinant ones that are in
- 14 development, those are recombinant proteins. Nothing
- 15 is live virus. So that's kind of the first thing. The
- 16 second thing, we would expect the mRNA vaccines to be,
- 17 quote, first out of the gate, if you will. I mean, we
- 18 have seen that today as we looked with information from
- 19 other variants.
- I think two things to consider is that, one,
- 21 we do want to be a little careful thinking back to some

- 1 of the past influenza vaccine days when we didn't have
- 2 a lot of -- a limited number of manufacturers. And
- 3 then if you have one manufacturer go down, has some
- 4 unexpected issues, you were really in a bad spot in
- 5 terms -- so you want to have some breath there. The
- 6 second thing is, while mRNA might be faster to make
- 7 that seed and certainly get to that production, there's
- 8 all these other decisions that are going to have an
- 9 equally important impact. And so, as I mentioned, the
- 10 need for a clinical trial, those types of things --
- 11 those are going to have an equal impact across the
- 12 different platforms.
- So just, again, agree in terms of the speed,
- 14 but I think there's some of these other things that we
- 15 have to keep in mind. And, finally, in terms of the
- 16 correlate, agree. There's a lot of work going on in
- 17 this space, and there will continue to be a lot of
- 18 work. I think it is one of the most challenging things
- 19 you will have to discuss and make some recommendations
- 20 on I think -- what exactly does that look like because
- 21 it is such a work in progress.

- 1 DR. CODY MEISSNER: Thank you.
- DR. ARNOLD MONTO: Thank you. Final question
- 3 is from Dr. Cohn.
- 4 DR. AMANDA COHN: Thanks, Dr. Johnson. To
- 5 steer away a little bit from the technical questions, I
- 6 was wondering programmatically how -- the influenza
- 7 program is mostly private purchase vaccine compared to
- 8 the COVID program, which has been entirely governmental
- 9 purchased -- and how the impact on normalizing of
- 10 transitioning COVID vaccination into the private sector
- 11 could or may impact the timing of these variant strain
- 12 changes and other new vaccines.
- 13 DR. ROBERT JOHNSON: Yeah. So a little beyond
- 14 my area of expertise. I think in general the decision
- 15 around the vaccine composition and the timing of
- 16 availability would not have a big impact regardless of
- 17 kind of who was paying for the product, which I think
- 18 is kind of your understanding. When we look at how
- 19 it's currently purchased and currently provided, again,
- 20 from just a strain selection determination process,
- 21 fairly straightforward. There are -- again, not my

TranscriptionEtc.

- 1 area, but I do know that from a commercialization
- 2 perspective there are a lot of moving pieces that have
- 3 to be put in place. That would have to be looked at,
- 4 and again, probably somebody with more experience than
- 5 I would need to talk to that. But it is a great point.
- 6 DR. ARNOLD MONTO: Thank you. Do I see an
- 7 additional hand raised there? Dr. Nelson.
- 8 DR. MICHAEL NELSON: Thank you. Thank you,
- 9 Dr. Monto, and thank you for a great, eloquent
- 10 presentation. Certainly, the challenges and unknowns
- 11 outweigh our current ability to accurately predict a
- 12 decent cycle for selection of new strains for a COVID-
- 13 19 vaccine. There were two important points that you
- 14 highlighted during your presentation that I hope you
- 15 might be able to expand on. One is the non-seasonal
- 16 early demand signal we would likely expect.
- If we were to change the strains of the
- 18 vaccine, there would be a more immediate demand signal
- 19 from the public for these newer vaccines, unlike what
- 20 we see with seasonal flu. Thank you for pointing it
- 21 out. I think it's very important. And you also talked

- 1 about the importance of at risk manufacturing by the --
- 2 or at least work done towards manufacturing for each
- 3 influenza seasonal cycle. In this current environment
- 4 of unpredictability, do you foresee with any of the
- 5 current platforms, or any of the current manufacturers,
- 6 an environment where at risk production might not be
- 7 required?
- 8 DR. ROBERT JOHNSON: I think it will depend
- 9 upon the other regulatory decisions. And what do I
- 10 mean by that? If the decision is that we would like to
- 11 have product available for a boost in September, okay,
- 12 and the strain selection decision is not going to be
- 13 made until, let's just say, beginning of May and if in
- 14 order to get that license you have to have a clinical
- 15 trial -- if you're not on your way to that clinical
- 16 trial by the beginning of May, I think it's going to be
- 17 very difficult to have, collectively across
- 18 manufacturers, enough product to meet that demand.
- 19 Could be wrong. There's lots of factors in
- 20 here, but that would be a pretty difficult thing to do
- 21 I think. And, again, I will just briefly point out, to

- 1 my knowledge, all of the manufacturers are doing things
- 2 in the space. It's more a matter of are they doing --
- 3 the question is are they doing the right thing in terms
- 4 of focusing on the right strains, which I think will
- 5 probably be the biggest challenge.
- 6 DR. MICHAEL NELSON: Thank you for pointing
- 7 that out. Certainly, the challenge of reducing
- 8 selection to production time and availabilities going
- 9 to be key to ensure that any changes in the vaccine
- 10 will actually be relevant to circulating strains and
- 11 uptick from product once it's made available to the
- 12 public. Thank you.
- DR. ARNOLD MONTO: And thank you all. This
- 14 concludes our morning and early afternoon session. And
- 15 we've given Mike and his group enough time to get ready
- 16 for the oral hearings -- public hearings. So we are
- 17 going to have that, and then we will --
- DR. PRABHAKARA ATREYA: Dr. Monto.
- 19 DR. ARNOLD MONTO: -- be starting up again --
- 20 MR. MICHAEL KAWCZYNSKI: Dr. Monto.
- 21 DR. ARNOLD MONTO: Yeah.

1	MR. MICHAEL KAWCZYNSKI: Again, hold on a
2	second. Dr. Monto, we're going to have to take a 10
3	minute break because I have to be able to call in all
4	the OPH speakers.
5	DR. ARNOLD MONTO: Okay.
6	MR. MICHAEL KAWCZYNSKI: So we're going to
7	take a brief 10 minute break. That's just a standard
8	practice. So at this time, studio, if you can, please
9	put us on music and then we will get that started. Is
10	that all right, Dr. Monto?
11	DR. ARNOLD MONTO: That is all right. And
12	after the Open Public Hearings we resume at 2:30.
13	MR. MICHAEL KAWCZYNSKI: Perfect.
14	

15 [BREAK]

16

- 17 MR. MICHAEL KAWCZYNSKI: All right. Thank you
- 18 and welcome back. And now we will hand it back to the
- 19 chair, Dr. Monto.
- DR. ARNOLD MONTO: Thank you, Mike. Welcome
- 21 to the open public hearing session. Please note that

- 1 both the Food and Drug Administration, FDA, and the
- 2 public believe in a transparent process for information
- 3 gathering and decision making. To ensure such
- 4 transparency at the Open Public Hearing session of the
- 5 advisory committee meeting; FDA believes that it is
- 6 important to understand the context of an individual's
- 7 presentation. For that reason, FDA encourages you the
- 8 open public hearing speaker, at the beginning of your
- 9 written or oral statement, to advise the committee of
- 10 any financial relationship that you may have with the
- 11 sponsor, its product, and if known, its direct
- 12 competitors.
- For example, this financial information may
- 14 include the sponsors' payment of expenses in connection
- 15 with your participation in this meeting. Likewise, FDA
- 16 encourages you at the beginning of your statement to
- 17 advise the committee if you do not have any such
- 18 financial relationships. If you choose not to address
- 19 this issue of financial relationships at the beginning
- 20 of your statement, it will not preclude you from
- 21 speaking. Over to you, Prabha.

-
1
_

2 OPEN PUBLIC HEARING

3

- 4 DR. PRABHAKARA ATREYA: Thank you, Dr. Monto.
- 5 Before I begin calling the registered speakers, I would
- 6 also just like to add the following guidance. FDA
- 7 encourages participation from all public stakeholders
- 8 in the decision-making processes. Here the advisory
- 9 committee meeting includes an open public hearing
- 10 session -- OPH session -- during which interested
- 11 persons may present relevant information as their
- 12 opinions of use.
- 13 Participants during the OPH session are not
- 14 FDA employees, are the members of this advisory
- 15 committee. FDA recognizes that the speakers may
- 16 present a range of viewpoints. These statements made
- 17 during the OPH session reflect the viewpoints of the
- 18 individual speakers or their organizations but are not
- 19 meant to indicate agency's agreement with the
- 20 statements made. I would first call upon the speaker,
- 21 Dr. Jessica Rose, who has a PowerPoint presentation.

- 1 Thank you.
- 2 Dr. Jessica Rose: Hello. This is my third
- 3 time presenting data in the context of VRBPAC meeting.
- 4 Thank you very much for having me. The last time I
- 5 presented on October 26th, 2021, the advisory committee
- 6 voting members voted 16 to 0 with one extension on the
- 7 injecting of 5 to 11-year-old children across the
- 8 united states with COVID-19 products. It's also
- 9 statistically implausible for the voting to be skewed
- 10 100 percent in one direction, and with all due respect,
- 11 I was left feeling as though I had just spent my time
- 12 going through an inconsequential exercise, rather than
- 13 a meaningful democratic process. I've decided to speak
- 14 again today, however, because even though I have very
- 15 little faith in the system, I still do have faith in
- 16 people. I have no conflicts of interest to declare.
- 17 Slide three. In preparation for my three-
- 18 minute presentation today, I read the event materials
- 19 at the bottom of the FDA online site where the
- 20 announcements of this meeting is posted. Within the
- 21 event materials, there are two PDF files posted and

TranscriptionEtc.

- 1 available for download that came to my attention. One
- 2 is entitled Labor to Allow Participation in an FDA
- 3 Advisory Committee and the other USFDA Advisory
- 4 Committee Member Acknowledgment of Financial Interest.
- 5 At least one of the advisory committee temporary voting
- 6 members sitting before us today is, in fact, conflicted
- 7 financially.
- 8 That voting member has identified it has a
- 9 personal financial interest as well as financial
- 10 interest of his employer, which can be a factor by a
- 11 particular matter of upholding the committee. The
- 12 latter financial interest are imputed to him under the
- 13 Federal Conflict of Interest Statute 18 U.S.C
- 14 subsection 208. Although no one will doubt that
- 15 standing judges excellent and unique qualifications and
- 16 expertise on such matters as seen; the expertise is not
- 17 in question. The conflict of interest is, in my humble
- 18 opinion.
- 19 The waiver that allows them to be a temporary
- 20 voting member today was based partially on the fact
- 21 that, quote, it'd be impossible to replace him. I do

- 1 not believe this to be true. There are certain many
- 2 excellent and exceedingly qualified experts able to
- 3 serve as a temporary voting member who are not
- 4 financially conflicted. This, in my opinion, would
- 5 allow for a more unbiased judging panel standing before
- 6 us ready to vote judiciously on this very sensitive
- 7 matter.
- In my opinion, in order to honor judiciary
- 9 responsibility, it should never be the case that
- 10 expertise can be used as the reason to waive a conflict
- 11 of interest, financial or otherwise. A conflict of
- 12 interest by definition means that judgment or decisions
- 13 could very well be compromised by the conflict. Which
- 14 is why our government agencies regulate them. If a yes
- 15 vote means personal and professional financial gain,
- 16 then why wouldn't one vote yes.
- I believe that precisely because of the
- 18 sensitivity of the subject matter, that it is not
- 19 serving the public to have conflicted parties as voting
- 20 members. This is the very same committee that voted to
- 21 recommend to the FDA to license the Rotashield vaccine

- 1 in February (audio skip) '98 that ended up being
- 2 withdrawn in 1999 due to a proven ongoing deception.
- 3 Slide two. My original intention today was to
- 4 present an update on adverse event data from the VAERS
- 5 government database to show that the rates of reporting
- 6 are not decreasing. In fact, they are continuing to
- 7 increase in the context of the COVID-19 injectable
- 8 product. I will simply leave you with the summary
- 9 side. Thank you very much for your time, again.
- 10 DR. PRABHAKARA ATREYA: Okay. Thank you. The
- 11 next speaker is Josh Guetzkow. You have three minutes.
- DR. JOSHUA GUETZKOW: My name is Josh
- 13 Guetzkow. Yup, thank you. My name is Josh Guetzkow, I
- 14 have no conflicts. You need to ask yourself, why did
- 15 only half of all eligible Israelis go back for the
- 16 second booster? Could it be due to adverse events
- 17 experienced by them or people they know from previous
- 18 doses?
- 19 Next slide. What you didn't hear about today
- 20 from the Ministry of Health is a survey they conducted
- 21 last fall of about 2,000 Israelis three to four weeks

- 1 after they received the first booster. The survey
- 2 asked about adverse events they had experienced.
- Next slide. The adverse event rate per
- 4 million doses calculated from the survey shows that
- 5 people experienced unacceptably high rates of severe
- 6 adverse events like Bell's Palsy, hospitalization, and
- 7 seizures.
- 8 Next slide. In September, representatives
- 9 from the Ministry of Health told this committee that
- 10 there were only 19 serious adverse events reported to
- 11 their safety monitoring system following the booster
- 12 dose, and today they reported 12. But a comparison
- 13 between the survey results and their monitoring system
- 14 clearly shows that it is totally unreliable. That it
- 15 undercounts adverse events by several orders of
- 16 magnitude.
- 17 Next slide. Sizable percentages of people
- 18 with preexisting conditions reported that their
- 19 conditions got worse after the first booster. Next
- 20 slide. A large majority said their adverse event was
- 21 either new or worse than the previous doses. A

- 1 significant minority said their condition was still
- 2 ongoing three to four weeks later at the time of the
- 3 survey and that they had sought medical care. The fact
- 4 that the vast majority of events started within one
- 5 week of the vaccination and was not spread evenly over
- 6 the time period strongly suggests they were caused by
- 7 the booster.
- 8 Next slide. The research from Sheba Hospital
- 9 on the fourth dose corrects for many biases that place
- 10 all of the large and observational studies on vaccine
- 11 effectiveness, including the study you heard about to
- 12 date. Next slide. It showed a very high rate of
- 13 severe systemic reactions and all signals of benefit
- 14 were below 50 percent which should make it ineligible
- 15 for EUA.
- Notably, there was no statistically
- 17 significant reduction in infections or viral load
- 18 despite a strong antibody response. Could this be due
- 19 to T-Cell exhaustion? The European Medicines Agency
- 20 has raised this concern.
- Next slide. We now know that the first doses

- 1 of these mRNA injections have varied and unexpected
- 2 effects on the immune system in ways we are only
- 3 beginning to understand. The effect of repeated doses
- 4 is uncharted territory.
- Next slide. One troubling indicator is that
- 6 the per dose reporting rate of immunodeficiency
- 7 syndrome after the third dose is 16 to 21 times higher
- 8 than for previous doses. These are not like flu
- 9 vaccines.
- Next slide. Approving additional boosters
- 11 without having solid answers to the questions on this
- 12 slide would be negligent and only serve to further
- 13 erode the publics' rapidly waning trust in the FDA and
- 14 other public health agencies. Thank you for your time.
- 15 DR. PRABHAKARA ATREYA: Thank you. The next
- 16 speaker is Dr. Sahin.
- 17 DR. AYGUEN SAHIN: Thank you. Cover slide,
- 18 please. Hello, my name is Dr. Ayguen Sahin. I'm the
- 19 CEO and cancer leader of Cancer Education and Research
- 20 Institute recognized by the United Nations and today I
- 21 will be focusing on equality in healthcare for

- 1 everyone. I have no conflict of interest to declare.
- Next slide, please. As we all know, one size
- 3 does not fit all in biology and medicine. More
- 4 vaccines must be made available for the public based on
- 5 their physiology, medical condition, and personal
- 6 choice. In this time of technology, this is possible.
- 7 Taxpayers should be able to receive the vaccine they
- 8 need.
- 9 Next slide, please. Millions of Americans
- 10 with various health conditions have been left behind
- 11 throughout the entire pandemic. These people are still
- 12 unvaccinated and in lockdown for two years now.
- Next slide. The data is clear. There's
- 14 absolutely no scientific reason not to approve Novavax
- 15 Covaxin, and not to give more attention to Corbevax
- 16 here in the United States.
- 17 Next slide. Novavax, Covaxin, and Corbevax
- 18 should not be labeled as alternatives. These are
- 19 proven and robust technologies already used in other
- 20 diseases. This is exactly what the American people are
- 21 desperately looking for.

- 1 Next slide. Long COVID symptoms are real and
- 2 horrific, and I predict a severe burden on our
- 3 healthcare system and economy.
- 4 Next slide. Therefore, protein-based vaccines
- 5 and Virion must be approved immediately. This would be
- 6 a game-changer in overcoming vaccine hesitancy and to
- 7 end this pandemic.
- 8 Next slide. Biologically, the most effective
- 9 way to eliminate current and future variants would be
- 10 the Virion vaccines. There is no time, health, and
- 11 economy to wait for a pan vaccine to be developed.
- 12 Next slide. Scientifically, again, there is
- 13 no reason not to approve Novavax, Covaxin, and not to
- 14 give more attention to Corbevax for children and youth
- 15 here in the United States.
- Next slide. A good portion of the world is
- 17 still unvaccinated. The United States must take
- 18 leadership in this by immediately approving protein-
- 19 based vaccines and Virion vaccines. This is critical
- 20 to end this pandemic.
- Next slide. The pandemic is not over for the

- 1 unhealthy. Taxpayers want their return of investment
- 2 and equality in healthcare must be achieved in this
- 3 pandemic. Thank you for giving me the opportunity to
- 4 speak today and for your attention to these important
- 5 matters. Thank you.
- DR. PRABHAKARA ATREYA: Thank you. The next
- 7 speaker is Dr. David Wiseman.
- 8 DR. DAVIDE WISEMAN: Thanks. Can you hear me?
- 9 Hello? Can you hear me?
- 10 DR. PRABHAKARA ATREYA: Yes, we can. Go
- 11 ahead.
- DR. DAVID WISEMAN: I'm sorry. Please see our
- 13 written comments. Next slide two and next slide three.
- 14 Waning and negative efficacy falls below FDA's 50
- 15 percent target or 30 percent lower confidence interval
- 16 before four months. Next slide four. Boosters wane
- 17 similarly both for BA1 and BA2.
- Next, slide five. Fourth dose confidence
- 19 intervals in Israel go negative. And today's Israeli
- 20 updated time series suggest a waning trend similar to
- 21 doses two and three. Next, slide six. The data are

- 1 partly consistent with our look at European data, but
- 2 all-cause mortality should be more reliable. We see
- 3 limited periods of benefit in the over 60s among
- 4 periods of all-cause mortality associated with boosting
- 5 and greater detriment in those younger.
- 6 Next, slide seven. We found a similar
- 7 detrimental association in CDC data. Next, slide
- 8 eight. Frequent boosting has been questioned in EMA
- 9 and states it as the last whack-a-mole. Next slide
- 10 nine. Safety signals with event ratios over flu rates
- 11 in the hundreds are ignored. Next slide ten. With
- 12 today's discussion of booster and variant dosing, how
- 13 are long-term tox concerns allayed by ignoring the gene
- 14 therapy definition. These are not classical vaccines.
- Next slide 11. The toxicity of non-natural
- 16 nucleosides, especially with cumulative dosing, is
- 17 raised by BioNTech's founder. Next slide 12. What are
- 18 the kinetics of the modRNA -- or spike protein? Does
- 19 it persistence over eight weeks not alarm anyone? Next
- 20 slide 13. Evidence of reverse transcription to DNA
- 21 invokes Dr. Sahin's fear of insertional mutagenesis.

- 1 Next slide 14. Where are the caner or genotoxic
- 2 studies? With repeated dosing, what is the risk of
- 3 insertional mutagenesis from DNA impurities mentioned
- 4 by EMA?
- Next slide 15. Moderna and BioNTech expected
- 6 to see gene therapy type regulation. Next slide 16.
- 7 FDAs gene transfer branch has six gene therapy labs
- 8 researching COVID and a universal flu vaccine. Sounds
- 9 a little bit like polyvalent COVID vaccines. Next
- 10 slide 17. FDAs gene therapy committee were asks
- 11 recently about liver neuro thrombosis and oncogenic
- 12 toxicity of viral vectors.
- 13 Next slide 18. This sounds familiar given
- 14 that CDC recognize a post-vax multi-system inflammatory
- 15 system that includes blood, liver, and neurotoxic
- 16 events. Next slide 19. Is FDA hiding gene therapy
- 17 concerns in plain sight? How does OTAT and the cell
- 18 therapy committee opine? Why are FDA excluding its own
- 19 experts? Next slide, 20. Let Dr. Hildreth ask the
- 20 sorts of questions he asks about monopurity (phonetic)
- 21 and NBAT.

- 1 Next slide 21. Given the uncertainties
- 2 discussed today about spring production, don't throw
- 3 out Ivermectin after this last study whose PI suggests
- 4 effects lost by underpowering and where 25 percent of
- 5 subjects missing from a key analysis showed a 50
- 6 percent efficacy.
- 7 And last slide, 22. FDA's failure to inspire
- 8 confidence in Nobel gene technology does not portend
- 9 better pandemic management. Thank you.
- 10 DR. PRABHAKARA ATREYA: Thank you. The next
- 11 speaker is Maria Young.
- MS. MARIA YOUNG: Hello, my name is Maria
- 13 Young and I'm a severe COVID-19/ECMO survivor. The
- 14 photo I've shared is me almost exactly a year ago. In
- 15 October of 2020 we all anxiously awaited the
- 16 development of COVID vaccines. I was a healthy active
- 17 41-year-old doing Bootcamps Yoga and working as the
- 18 director of conference services. Even with precautions
- 19 I contracted COVID-19 and became very sick.
- 20 After two negative PCR tests and a hospital
- 21 release, I called the ambulance for myself. My oxygen

- 1 was at 40 percent when it should be in the upper 90s.
- 2 after 12 days at a local hospital, on several types of
- 3 oxygen masks, I was sedated, intubated, and transferred
- 4 to the Johns Hopkins Hospital in Baltimore where I was
- 5 placed on a ventilator and ECMO. ECMO is the most
- 6 intense form of life support we have and is available
- 7 in less than ten percent of American hospitals. I was
- 8 not expected to survive.
- 9 Next slide, please. I spent almost three full
- 10 months sedated and often paralyzed. During my
- 11 hospitalization I suffered several collapsed lungs, a
- 12 blood clot, a severe eye injury, several infections,
- 13 three blood transfusions, drug withdrawals, delirium,
- 14 demoralization, and my family was unable to see me for
- 15 almost three months.
- I remember nothing from early November until
- 17 mid-February. I had to relearn to walk, talk, swallow,
- 18 and to be independent. On the day of my hospital
- 19 release, my parents and sister received their first
- 20 dose of the Pfizer vaccine. That same week we lost a
- 21 close family member to COVID-19 in Ecuador before she

- 1 was able to receive the vaccine. I'm happy to say that
- 2 I am fully vaccinated against COVID.
- 3 As a result of my illness, I've started a non-
- 4 profit called Maria's Miracle, which is dedicated to
- 5 funding critical care medical training and supporting
- 6 families and patients facing ECMO treatment or recovery
- 7 from prolonged ICU stays. I also work as a vaccine
- 8 advocate with the national non-profit organization
- 9 Vaccinate Your Family, to increase awareness about the
- 10 seriousness of COVID and the importance of vaccination.
- 11 Next slide, please. I share my story, not to
- 12 instill fear, but to highlight the risks of this virus
- 13 and to emphasize that vaccination is our best
- 14 protection. I never imagined I would be the one to
- 15 almost lose my life to COVID. As a result of my
- 16 illness, my life will never be the same. It's my hope
- 17 my story can be a lesson for others. Nothing in life
- 18 is without risk. As illustrated by my story, COVID
- 19 infection can cause serious outcomes and long-term
- 20 effects regardless of age or health status. Vaccines
- 21 continue to be our best defense against hospitalization

- 1 and severe illness.
- To date, according to the CDC, almost one
- 3 million people in the United States, including over a
- 4 thousand children, have lost their lives to COVID. We
- 5 must do everything we can to protect people from COVID
- 6 by ensuring they have access to vaccines, testing, and
- 7 treatment. Thank you for your time.
- 8 DR. PRABHAKARA ATREYA: Thank you. The next
- 9 speaker is Dr. Doshi. Peter Doshi.
- 10 DR. PETER DOSHI: Hi. Hello. Hello, I'm
- 11 Peter Doshi, thanks for the opportunity to speak, and
- 12 hopefully, you can see my title slide with the
- 13 financial disclosures. For identification purposes,
- 14 I'm on the faculty of the University of Maryland and
- 15 the editor at the BMJ. I have no relevant conflicts of
- 16 interest and my comments today are my own.
- 17 Next slide, please. Last November, the BMJ
- 18 reported the disclosures of a list of lower name Brook
- 19 Jackson, who worked for Ventavia, a contract research
- 20 company that ran three of the clinical trial sites for
- 21 Pfizer's vaccine. Jackson alleged that the company had

- 1 falsified data on blinded patients, employed
- 2 inadequately trained vaccinators, and was too slow --
- 3 was slow to follow up on adverse events. She provided
- 4 the BMJ with company emails, internal documents, text
- 5 messages, photos, and recordings of her conversation
- 6 with company employees.
- 7 Next slide. This photo, for example, shows
- 8 vaccine packaging materials that are only supposed to
- 9 be seen by unblinded staff just left out in the open.
- 10 Next slide. An unblinding may have occurred on a far
- 11 wider scale. Here you can see the document containing
- 12 the instructions Ventavia staff were given to file each
- 13 trial participant's randomization and drug assignment
- 14 confirmation sheet into each participant's chart. This
- 15 contains unblinded information.
- Next slide. Unblinding, as I think everybody
- 17 knows, creates serious concerns about data integrity.
- 18 Once this massive error was discovered, Ventavia asked
- 19 staff to go through each and every chart to take out
- 20 the randomization and drug assignment confirmation.
- 21 You can see here, an email from Ventavia's COO reacting

- 1 after discovery of the problem. They had not even
- 2 realized that the drug assignment confirmation
- 3 contained unblinding information.
- 4 Next slide. In the heat of a pandemic, it's
- 5 not hard to imagine that corners were cut, and mistakes
- 6 were made. Some mistakes are benign, but others carry
- 7 serious consequences to data integrity. One hopes
- 8 Ventaiva is an extreme outlier, but we need more than
- 9 just hope. We need evidence that the data were dealt
- 10 with properly. We need regulatory oversight. But
- 11 despite whistleblower Brooke Jackson's direct complaint
- 12 to the FDA; FDA never inspected Ventavia. In fact, FDA
- 13 only inspected nine of the trials 150-plus sites before
- 14 approving the vaccine. Just nine sites. And Pfizer
- 15 continues to use Ventaiva for trails.
- 16 Next slide. What about Moderna? FDA had over
- 17 a year and inspected just one -- one -- of the trials
- 18 99 sites. How can FDA feel confident in the Moderna
- 19 data based on a one percent sample? Next slide. Data
- 20 integrity requires adequate regulatory oversight.
- 21 Trustworthy science requires data transparency. It's

- 1 been over a year, but anonymized participant-level data
- 2 remain inaccessible to doctors, researchers, and the
- 3 public.
- 4 The public paid for these products and the
- 5 public takes on the balance of benefits and harms post-
- 6 vaccination. The public has a right to data
- 7 transparency and FDA has an obligation to act.
- 8 Thank you very much.
- 9 DR. PRABHAKARA ATREYA: Okay, thank you. The
- 10 next speaker is Dr. Brianne Dressen.
- 11 DR. BRIANNE DRESSEN: Hello, my name is
- 12 Brianne Dressen. I have no relevant conflicts of
- 13 interest. For transparency, I am a co-founder of
- 14 React-19.org, a non-profit made by the COVID vaccine-
- 15 injured for the COVID vaccine injured and we are
- 16 dedicated to the advocacy and healing for those
- 17 suffering lasting adverse events. I experienced a
- 18 life-altering reaction after my one and only dose of
- 19 AstraZeneca in the clinical trial here in the United
- 20 States.
- Because of my adverse event, I was not able to

- 1 get the second dose. I was unblinded and dropped from
- 2 the trial. My access to the clinical trial app was
- 3 deleted. In the New England Journal of Medicine, it
- 4 mentions that these cases are followed for up to 730
- 5 days. I was last notified from the clinical trial
- 6 company on day 60. I wrote to the New England Journal
- 7 of Medicine about the matter and Dr. Ruben who is on
- 8 this committee declined to publish my letter saying
- 9 that one case in a study of tens of thousands would
- 10 have little effect.
- 11 You can see my list of debilitating symptoms
- 12 here, first slide. While I am improving, I still
- 13 struggle with at least half of these symptoms more than
- 14 a year out. My life will never be the same. The
- 15 vaccine has robbed me of my health.
- 16 Next slide. Because of the vaccine injureds
- 17 repeated cry continue to fall on deaf ears at the FDA
- 18 and the drug companies, and because the medical
- 19 community refuses to acknowledge and treat us because
- 20 of the silence from these companies and the FDA, our
- 21 small, injured community has suffered the loss of those

- 1 who have taken their own lives as a result of months-
- 2 long suffering.
- These are mothers, sisters, daughters, sons,
- 4 fathers, and friends. These are not numbers, these are
- 5 people. No support from their medical teams, no
- 6 support from the government. They died alone. Next
- 7 slide. Here's a list of the insurmountable barriers
- 8 which exist today that block our access to access to
- 9 early intervention measures and to help those who are
- 10 now chronically ill. The column on the left are the
- 11 compounding factors that completely eliminate the
- 12 proper flow of information to the research and medical
- 13 communities.
- 14 But there is hope. The column on the right
- 15 are the solutions. You who are here in this meeting
- 16 today, hold the key to open the door to provide hope
- 17 and healing to those who are hanging on one day at a
- 18 time.
- 19 Disclose and collect the data on potential
- 20 adverse-related events. Like MISV, neuropathy, and
- 21 tinnitus. Give the green light for research to start.

- 1 German health insurance agencies have already
- 2 established the burden on the healthcare systems due to
- 3 the high rate of COVID vaccine-related adverse events.
- 4 Revamp the vaccines to remove the spike as an antigen.
- 5 FDA it is your responsibility to ensure the safety and
- 6 efficacy of these vaccines.
- 7 We are the clear evidence and living proof
- 8 that there are questions regarding safety. You have
- 9 ignored the repeated cries of those injured by the
- 10 vaccines and your silence is deafening. Thank you.
- 11 DR. PRABHAKARA ATREYA: Thank you. The next
- 12 speaker is Alexandra Robinson.
- MS. ALEXIS ROBINSON: Hi, thank you for having
- 14 me. Yes, my name is Alexis Robinson, I'm 37 years of
- 15 age. After I received the COVID vaccine, I was
- 16 diagnosed with tinnitus, Endolymphatic Hydrops,
- 17 glaucoma, HS, peripheral neuropathy, and myalgia.
- Next slide, please. My symptoms include
- 19 tinnitus, shortness of breath, chest pain, severe neck
- 20 and shoulder stiffness and pain, head pressure,
- 21 dizziness, nausea, tingling in the feet, severe calf

- 1 pain in both legs, internal tremors, body aches,
- 2 glaucoma, fatigue, stomach pain, ear pain, and
- 3 fullness.
- 4 Next slide, please. Before the COVID vaccine,
- 5 I was happy, full of life, and on the right path. Able
- 6 to get out and walk and actually enjoy sunny days
- 7 outside. I enjoyed calling to speak to my family on a
- 8 regular basis. That all changed April 7th, 2021, when
- 9 I received the COVID-19 vaccine. I thought I was doing
- 10 the right thing by receiving the COVID vaccine to
- 11 protect myself, my family, and others.
- 12 It has been a horrible nightmare ever since
- 13 that day. I'm in constant agony and pain. Simple
- 14 tasks like grocery shopping can be unbearable. I have
- 15 so many side effects that I would have never imagined
- 16 were even possible and that were never mentioned by
- 17 Pfizer. Now 90 percent of my time is spent inside.
- 18 I've had doctors be both be very rude and
- 19 dismissive and even some that have walked out me if I
- 20 even mention that my symptoms were caused by the COVID
- 21 vaccine. They aren't even willing to explore doing

- 1 further testing or treatment. Dealing with these side
- 2 effects have been overwhelming every day -- an everyday
- 3 struggle.
- 4 Next slide, please. When will the COVID
- 5 vaccine injured people be acknowledged and treated? It
- 6 is of the upmost importance for COVID vaccine injuries
- 7 and adverse reactions to be acknowledged in order for
- 8 us all to receive the best care, thorough testing, and
- 9 ultimately be believed. Time is of the essence. None
- 10 of my physicians have reported my case severe. This is
- 11 because they don't have all the factual information
- 12 that's being withheld to fully understand the severity
- 13 of our cases.
- 14 That critical data supports the evidence of
- 15 our injuries. We need immediate, sufficient, and
- 16 adequate care for these gravely devastating effects in
- 17 order to stop the progression of these illnesses caused
- 18 by the COVID vaccine. The release of data and
- 19 acknowledgement of vaccine injuries will not only allow
- 20 us to receive the correct treatment in a timely manner,
- 21 but it will also open doors to more research into the

- 1 best possible ways on how to treat us and to help
- 2 prevent future injuries.
- 3 Those injured by the COVID vaccine involve all
- 4 age groups who are suffering and being continuously
- 5 silenced. Would you silence your children, your
- 6 relatives, your grandparents, your family, your
- 7 friends, your loved ones, and let them suffer? Help
- 8 save lives. FDA, release the VAERS data. Thank you
- 9 for your time.
- 10 DR. PRABHAKARA ATREYA: Thank you. The next
- 11 speaker is Sarah Gleason.
- MS. SARAH GLEASON: Hi everyone, my name is
- 13 Sarah Gleason, I'm 42, and I was thrilled to get the
- 14 Moderna vaccine. As a massage therapist of 22 years, I
- 15 decided to shut down my thriving business due to fear
- 16 of catching and spreading COVID-19. I suffered greatly
- 17 for it, but I resolved not to reopen until I could
- 18 ensure everyone's safely.
- 19 I'm a democrat and absolutely pro-science. I
- 20 was excited to rebuild my business after being
- 21 vaccinated. Instead, I received my second shot of

- 1 Moderna on April 2nd, 2021, and my dreams of rebuilding
- 2 came crashing down. The injuries it caused persist a
- 3 year later with no end in sight. Many of my symptoms
- 4 are listed on the slide, but this is not all of them.
- 5 Doctors I saw originally didn't know what to
- 6 do with me. I've learned I was one of the lucky ones
- 7 since they, at least, treated me kindly. Even though
- 8 it all began when I got the shot, I was even in a bit
- 9 of denial because vaccine injuries are just anti-vax
- 10 nonsense, right? I was dead wrong and have been
- 11 choking on humble pie ever since. If it wasn't
- 12 happening to me, I wouldn't believe me either. Doctors
- 13 are simply not being educated about vaccine injuries
- 14 and the damage they're doing to us, due to this lack of
- 15 knowledge, is staggering.
- Trying to live with these symptoms is hard
- 17 enough; to not be believed by doctors, family members,
- 18 and friends as your once strong and healthy body
- 19 deteriorates; the damage this can cause is
- 20 immeasurable. Science demands the totality of the data
- 21 with transparency, and this is clearly not happening.

- 1 Science is not being carried out when variables are
- 2 being ignored. I had to advocate for myself while
- 3 experiencing some intense symptoms, combing the
- 4 internet for information I didn't know was being
- 5 withheld. It took me almost 11 months to even be seen
- 6 by a neurologist.
- 7 Luckily for me, this particular neurologist
- 8 has been studying vaccine injuries and has other
- 9 patients like me. My medical chart finally clearly
- 10 states my symptoms are vaccine induced. So, because my
- 11 reactions are not being properly researched, she says
- 12 she has nothing more for me than quote/unquote band
- 13 aids. She says that maybe if doctors had tried to help
- 14 me early on, maybe the worst of it could've been
- 15 prevented.
- Instead, the doctors I saw at the beginning
- 17 just told me to wait, and wait, and wait some more.
- 18 This was their expert medical advice. By July, I had
- 19 gotten so much worse and now I wonder what might've
- 20 happened if they'd only been informed of the type of
- 21 reaction I was having. I don't want this to happen to

- 1 anyone else. To be hurt and left to fend for
- 2 themselves. I just want my life back.
- I can't socialize much, I can't exercise, I
- 4 have no way of making an income. Even if I felt well
- 5 enough, I can't get a booster; so where does that leave
- 6 me? If I do recover -- which no one can tell me if I
- 7 will or not -- how will I work safely? The CICP and
- 8 VICP are supposed to support those who have been
- 9 injured by vaccines. They have not helped any of us.
- 10 I don't claim to know the right answer, but I know you
- 11 have the power to change this. To help us get our
- 12 health, credibility, friends, family, and financial
- 13 security back. And who knows what medical discoveries
- 14 lie inside our bodies. Aren't you curious?
- I still stand with science, and I still
- 16 believe the government and the medical community is
- 17 capable of doing right by us, but it all starts with
- 18 you simply doing your job. Thank you so much for your
- 19 time and consideration.
- DR. PRABHAKARA ATREYA: Thank you, so much.
- 21 The next speaker is Karen Discoll.

- 1 MS. KAREN DISCOLL: Thank you. Hello. I'll
- 2 start with a little bit about me. I am married and we
- 3 have two grown daughters and four grandkids. I've
- 4 worked as a registered nurse for over 30 years. I have
- 5 lived an active, healthy lifestyle with no health
- 6 concerns. None. I trusted the government who
- 7 repeatedly said the COVID vaccines were safe and
- 8 effective; so, I took them.
- 9 Shortly after the second Pfizer, my health and
- 10 my life seriously changed. The slide shows most of my
- 11 symptoms I've had and/or still have. Many of them are
- 12 similar to other vaccine injured and the COVID long-
- 13 haulers. I'll describe only a few. My daily headaches
- 14 were sharp and intense, unrelieved by over-the-counter
- 15 medication. Brain fog left me unable to process
- 16 information. At first unable to do even simple texting
- 17 on my phone. Noise and activity caused overstimulation
- 18 that I just could not handle.
- 19 The neurologist said my symptoms were very
- 20 similar to a traumatic brain injury. I had tremors
- 21 inside my chest, it felt like a cellphone that I

- 1 couldn't turn off. I had adrenaline dumps, which left
- 2 me in a constant state of fight or flight and unable to
- 3 sleep. The POTS symptoms raised my heart rate to 140
- 4 simply by standing up.
- 5 At night, I would literally crawl to the
- 6 bathroom to avoid this. I somehow managed light
- 7 cooking and dishes by sitting in a chair. The fatigue
- 8 is overwhelming. Activity is limited because I easily
- 9 become breathless, and activity causes my symptoms to
- 10 get worse. This has been very disabling; I've been
- 11 unable to work now for seven months.
- 12 I've been through a revolving door of
- 13 physicians without answers. Three of them did
- 14 acknowledge my symptoms were a result of the vaccine,
- 15 but they didn't know how to treat me. Basic
- 16 diagnostics were coming back with only slight
- 17 abnormalities or normal values, until recently. I
- 18 underwent some specialized blood tests showing blood
- 19 vessel inflammation and abnormal platelet activation.
- The platelets caused the blood clots. I will
- 21 be seeing, yet another, specialist very soon. Our

- 1 United States healthcare system is not addressing the
- 2 vaccine injured but instead seems to be sweeping us
- 3 under the rug. Where is the ethics in this? I'm not
- 4 an anti-vaxer. This vaccine has injured me, and many
- 5 others, and we need help now, not in five years. For
- 6 those of us going through this hell, we don't know what
- 7 will happen to us over time.
- 8 Some have committed suicide. In Europe and
- 9 Japan, their scientists are addressing the vaccine
- 10 injured and actively researching to find answers for
- 11 them. We need you to step up, we need you to do the
- 12 same, and hopefully collaborate across the globe to
- 13 find solutions to help us. That's all I have. Thank
- 14 you for the opportunity and please, please take our
- 15 comments to heart.
- DR. PRABHAKARA ATREYA: Thank you. The next
- 17 speaker is Ms. Amy Fischer.
- 18 MS. AMY FISCHER: Slide one, please. My name
- 19 is Amy Fischer. No conflicts. I am not now, nor have
- 20 I have ever been an anti-vaxer, but I am here to share
- 21 with you that it is believed I was harmed by the Pfizer

- 1 COVID vaccine. My new rheumatologist, a highly
- 2 esteemed professor of medicine, believes that I likely
- 3 had an autoimmune reaction to vaccination and
- 4 consequently developed autonomic dysfunction mass cell
- 5 disorder and MECFF. Prior to the vaccine, I was
- 6 completely healthy.
- 7 Next slide. Go two slides ahead. I lost my
- 8 mom to COVID in January '21 just days before here
- 9 memory care was to receive the vaccine. So, when my
- 10 turn came, I eagerly stuck out my arm with tears in my
- 11 eyes. Next slide. I didn't have an immediate
- 12 reaction, but weeks later was overwhelmed by intense
- 13 fatigue. When I suddenly felt a burning pain in my
- 14 lower legs and feet, an eight-month long grueling
- 15 workup began.
- As I waited for tests and pleaded to see
- 17 doctors, my condition worsened. No one seemed to know
- 18 what was wrong with me and I got no care. Please, next
- 19 slide. My neurologist believed I might've developed
- 20 long COVID from breakthrough infection, but a negative
- 21 nucleocapsid test ruled that out. I brought up the

- 1 vaccine with a few doctors. Most said something to the
- 2 effect of, "It is possible, but we don't have any
- 3 data." We don't have data.
- 4 This has been an incredible nightmare. It's
- 5 been almost a year, and I can no longer do normal
- 6 things. I cannot be upright for very long. I get
- 7 easily winded with mild exertion and become
- 8 incapacitated if I try to do anything more involved. I
- 9 still have burning, tingling, vibrating pain in all
- 10 four limbs. Buzzing in my ears.
- I'm learning to accept that I may be
- 12 permanently damaged. I have not worked in almost a
- 13 year. Now it took me eight months of relentless
- 14 advocacy and long-distance travel to find doctors who
- 15 are just now starting to diagnose me. I will always
- 16 wonder; had I been treated aggressively in the
- 17 beginning with things like corticosteroids and IVIG
- 18 would I be fine today? The NIH was studying people
- 19 like me since January '21; why did my doctors not know?
- Now, you could say my illness is coincidence,
- 21 but I know there are tens of thousands like me because

- 1 it's a small internet. Janet Woodcock told me in an
- 2 email that you were seeing symptoms post vax very
- 3 similar to post COVID, but we are excluded from long
- 4 COVID clinics and long COVID studies.
- I have not yet reported to VAERS because
- 6 doctors won't do it and I'm still waiting for POTS
- 7 assessment. I will report the word is you are not
- 8 following up. Do your job FDA. How can you be talking
- 9 about new vaccines until you followed up on VAERS
- 10 report? Until you've released data, we are invisible
- 11 to those who should be helping us, and this is very
- 12 harmful. Thank you so much for listening. I hope you
- 13 take it to heart.
- DR. PRABHAKARA ATREYA: Thank you. The next
- 15 speakers do not have any PowerPoint presentations, so
- 16 we'll start with Dr. Rituparna Das.
- 17 DR. RITUPARNA DAS: Thank you. My name is
- 18 Rita Das and I'm a clinical development lead at
- 19 Moderna. As an infectious diseases' physician, and a
- 20 vaccine developer, I am humbled and privileged to be
- 21 part of the team contributing to this effort to bring

- 1 forward safe and effective COVID-19 vaccines. To date,
- 2 over 75 million people in the U.S. have been vaccinated
- 3 with the Moderna COVID-19 vaccine, or Spikevax, since
- 4 it was authorized for emergency use in 2020.
- 5 42 million of these people have also received
- 6 a booster dose. The trajectory of the pandemic has
- 7 continued to challenge us. Once the Omicron variant
- 8 emerged, we observed a wave of breakthrough infections
- 9 with Omicron, although protection against severe
- 10 disease was maintained. Neutralizing antibodies
- 11 against Omicron are detected after the primary series
- 12 of the Moderna COVID-19 vaccine and substantially
- increase after the booster dose.
- 14 But real-world data has shown that vaccine
- 15 effectiveness against Omicron infection declines over
- 16 time to less than 50 percent at 60 days or more after
- 17 the booster. This leaves people who are most
- 18 susceptible to poor outcomes from COVID-19 vulnerable.
- 19 We support the agency's authorization of a second
- 20 booster dose of our COVID-19 vaccine for individuals 50
- 21 years of age and older, as well as those who are

- 1 immunocompromised. This will be an important tool to
- 2 extend the duration of vaccine protection while data
- 3 with variant matched modified vaccine candidates are
- 4 generated.
- 5 Moderna began clinical trials with booster
- 6 doses of variant matched candidate vaccine such as Beta
- 7 and Delta, as well as combination of variants in the
- 8 spring of 2021. To date, approximately 4,500 trial
- 9 participants have received modified vaccine candidates,
- 10 including a bivalent vaccine targeting both the Omicron
- 11 variant, as well as the original strain. We look
- 12 forward to sharing these data on the modified booster
- 13 vaccines with the agencies soon.
- By vaccinating with an mRNA sequence closer to
- 15 the currently existing variant of concern, we hope to
- 16 improve neutralizing antibody titers and thereby extend
- 17 the duration of protection with booster doses. We
- 18 thank the agency for the forward-looking discussion
- 19 today on the long-term strategy for booster doses. As
- 20 the pandemic continues to evolve, Moderna is committed
- 21 to pursuing rapid development of variant-adaptive

- 1 vaccines that have the potential to provide broader and
- 2 more durable protection against emerging variants of
- 3 concern. Thank you very much.
- 4 DR. PRABHAKARA ATREYA: Thank you. The next
- 5 speaker is Mr. Matt Crawford.
- 6 MR. MATTHEW CRAWFORD: Hi, my name is Matthew
- 7 Crawford. I report no conflicts of interest. Thank
- 8 you for inviting me to speak. There is currently no
- 9 transparent data whatsoever showing efficacy of the
- 10 experimental COVID-19 injectable products. We were
- 11 promised transparency, but the FDA still fights the
- 12 release of the vaccine trial data in court. That data
- is necessary to determine why so many more people in
- 14 the treatment arm were excluded from analysis.
- These exclusions completely overwhelm all
- 16 efficacy computations. To this day, Brook Jackson's
- 17 reports of protocol deviations, trail unblinding, and
- 18 data falsification go ignored by the FDA and CDC.
- 19 These trials never met basic standards of evidence.
- 20 Neither do the published retrospective studies. Buried
- 21 in the supplement of the study by Noah Dagen (phonetic)

- 1 and colleagues is an incorrect set of calculations that
- 2 fail to adjust for a serious bias that the study
- 3 acknowledges and then downplays.
- 4 Professor Mark Reader demonstrated that the
- 5 study methodology could make a null saline solution
- 6 achieve a 72 percent efficacy rate claimed by the study
- 7 authors. Professor Norman Fenton has shown that delays
- 8 in reporting a mortality can generate short-term
- 9 appearances of efficacy where none exists. It is
- 10 noteworthy that this illusion would appear, like
- 11 rapidly waning efficacy over time, which is exactly
- 12 what authorities have been reporting in order to
- 13 encourage booster shots.
- In another study in the Israeli population,
- 15 Hauth et. al (phonetic), the use of short-term
- 16 intervals of measurement can substantially exacerbate
- 17 this or other biased effects. The study authors failed
- 18 to make an obvious risk adjustment in their base unit
- 19 of person days and most of them reported conflicts of
- 20 interest in the form of Pfizer equity or options. The
- 21 CDC now admits to withholding select data from the

- 1 public. This admission called all vaccine summary
- 2 surveillance data into question.
- 3 A CDC study from the vaccine safety datalink
- 4 team concludes that the vaccinated somehow died up to
- 5 72 percent less often than the unvaccinated by non-
- 6 COVID causes. This absurd result confirms the
- 7 existence of statistical sieves in surveillance
- 8 analyses. Whistleblowers noticed higher rates of
- 9 illness in the DMED. The DOD claimed these results
- 10 were due to a glitch, however, reference data published
- 11 in the medical surveillance monthly reports was
- 12 substantially manipulated prior to the May 2021
- 13 publication. There are still highly concerning vaccine
- 14 safety signals, and it is hard to believe that neither
- 15 the CDC nor DOD noticed any problem with the data for a
- 16 full nine months.
- 17 When vaccines rolled out, every nation in
- 18 Europe saw spikes in COVID case fatality rates
- 19 equivalent to over 1,000 extra COVID deaths per million
- 20 doses delivered. An analysis of Massachusetts data
- 21 found similar results. In line with those

- 1 calculations, a large German insurance company declared
- 2 that vaccines killed tens of thousands of Germans.
- 3 Among nations, there are clear positive correlations
- 4 between vaccination and both COVID-19 case and death
- 5 rates. These rates rose soon after vaccination
- 6 programs began in nearly every nation.
- 7 The experimental gene therapy campaign is
- 8 dangerous and unscientific. All facts presented in
- 9 this talk are sited at the round end of the year sub
- 10 staff. Have a lovely day and remember antibodies are
- 11 like electrolytes.
- 12 DR. PRABHAKARA ATREYA: Thank you. The next
- 13 speaker is Ms. Kim Witsak.
- 14 MS. KIM WITSAK: Good afternoon, my name is
- 15 Kim Witsak, and I'm speaking on behalf of Woody
- 16 Matters, a drug safety organization started after the
- 17 death of my husband due to an undisclosed side effect
- 18 of antidepressants. We represent the voice of families
- 19 who live every day with the consequences of a flawed
- 20 drug safety system.
- 21 I'm curious exactly why are we meeting today

- 1 to discuss the future of boosters, when last week the
- 2 FDA just went ahead and authorized a fourth shot
- 3 without the advisory committee input. And why did the
- 4 FDA authorize booster number two for those over 50
- 5 years old even though Pfizer only asks for 65 and
- 6 older? What a gift these extra 15 years must mean to
- 7 Pfizer's bottom line.
- I hope committee members feel some outrage, as
- 9 I do, about another FDA decision being made behind
- 10 closed doors when we were promised an open and
- 11 transparent process. Over a year ago, the public was
- 12 told that these rushed-to-market novel mNRA vaccines
- 13 were over 95 percent effective and stop the spread of
- 14 the virus.
- 15 Follow the science, by March Pfizer quietly
- 16 started studying boosters and had the data showing
- 17 waning efficacy all before the Delta variant. But they
- 18 didn't tell anybody about this until their preprint was
- 19 released in July. Meanwhile, we, the public just got
- 20 the dictates. Get fully vaccinated to end the
- 21 pandemic. Now get boosted to end the pandemic. Empty

- 1 slogans to hide the reality that officials are making
- 2 it up as they go.
- 3 The latest, a fourth shot, and already FDA's
- 4 Dr. Peter Marks is hinting that we'll most likely need
- 5 a fifth shot in the fall. While the completely
- 6 efficacious narrative has changed significantly over
- 7 time, the completely safe message has remained
- 8 unchanged. Despite the historical high numbers of
- 9 Bayers reports. Last year, over a million adverse
- 10 events were filed with over 2,000 deaths. Why isn't
- 11 this committee, the FDA, mainstream media, and the
- 12 medical establishment wanting to take an active
- 13 interest in investigating the injuries, deaths, and
- 14 increases in other diseases post-vax before we rush
- 15 into whatever halts transmission or stop respiratory
- 16 viruses doing what viruses do? We need to stop hiding
- 17 behind emergency use authorization. We are setting a
- 18 dangerous precedent of inadequate evidence being used
- 19 to justify widespread and regular ongoing vaccinations.
- Worse yet, schools and employers are using
- 21 these recommendations to mandate the vaccines putting

- 1 our children and adults at risk while not reducing
- 2 infections. The use of EUA for this fundamentally
- 3 flawed product is poised to cement a regulatory
- 4 precedent that will further destroy public's confidence
- 5 for years to come.
- 6 Let's stop making predictions about people's
- 7 health. Insanity is doing the same thing over and over
- 8 and expecting a new result. Thank you so much.
- 9 DR. PRABHAKARA ATREYA: Thank you. The next
- 10 speaker is Rotem. Ms. Rotem. Rebecca Rotem.
- 11 MS. REBECCA ROTEM: Hi, my name is Rebecca
- 12 Rotem. I have no known conflicts. Thank you for
- 13 allowing me to speak today and for all of your work on
- 14 vaccines.
- I have a 12-year-old son who is fully
- 16 vaccinated with 2, 30 microgram doses of Pfizer and who
- 17 also had a COVID infection at the end of February 2022
- 18 with documented PCR results. My son is now being
- 19 required by his beloved Jewish sleepaway camp that he's
- 20 attended for the past five years to get a booster shot
- 21 to attend again this summer.

- 1 I'd like to be an informed medical consumer,
- 2 so before he gets the booster, I really would like to
- 3 understand the risk and benefit data on booster shots
- 4 in healthy 12-year-old males who are fully vaccinated
- 5 and have had COVID. I would also like to understand
- 6 what protection does two doses plus a booster give a
- 7 healthy 12-year-old as compared to two doses plus a
- 8 documented COVID infection.
- 9 Since they're requiring the booster, I have
- 10 asked the Union for Reformed Judaism, or the URJ, for
- 11 the data I'm seeking, and their medical team contact
- 12 tells me it does not exist. As background, the URJ is
- 13 requiring all attendees of its 15 youth summer camps to
- 14 be up to date on shots according to CDC guidelines,
- 15 with no exemptions from a booster for campers ages 12
- 16 and up who are fully vaccinated plus have had a
- 17 documented COVID infection.
- I understand other summer camps have similar
- 19 booster requirements as well, in addition to colleges
- 20 in the Northeast and on the west coast. Nearly all of
- 21 which are requiring the booster and not allowing

- 1 exemptions for prior infection. To be clear, I'm not
- 2 opposed to getting my 12-year-old son a booster if the
- 3 information I am seeking exists, and the benefits and
- 4 risks, including myocarditis, for example, in fully
- 5 vaccinated adolescent males with prior COVID infections
- 6 justify a booster shot.
- 7 But I'm struggling with doing it in the
- 8 absence of the data which would enable me to do it with
- 9 informed consent. I imagine this topic is relevant for
- 10 many other parents as well, considering how many kids
- 11 came down with Omicron. Does the risk and benefit
- 12 information I am seeking exist? If not, should
- 13 organizations be allowed to require this third dose of
- 14 a medical product? In my experience, these
- 15 organizations are not conducting their own research,
- 16 rather consider their booster requirements to be in
- 17 line with current FDA and CDC approvals and guidance.
- 18 Therefore, I think clarification from the FDA
- 19 would go a long way. Thank you for clarifying the
- 20 FDA's position on booster requirements for adolescent
- 21 males who are fully vaccinated plus have had a

- 1 documented COVID infection. Thank you.
- DR. PRABHAKARA ATREYA: Thank you. The next
- 3 speaker is Andre Cherry.
- 4 MR. ANDRE CHERRY: I report no conflicts of
- 5 interest. My name is Andre Cherry, I'm 22 years old,
- 6 and I was injured after taking Moderna's COVID-19
- 7 vaccine. Before this, I was a published author, an
- 8 artist, musician, an active member in my church,
- 9 family, and community. On my way to achieving my
- 10 bachelor's degree in English.
- 11 Beginning only two hours after my vaccination,
- 12 I progressively lost control over my life. My limbs
- 13 and body parts jerked, contort, and become rigid or
- 14 flaccid on their own. My eyes and mouth shut tight and
- 15 cannot be opened of my own volition. I can't tell when
- 16 I wake up in the morning if I'll be able to walk or
- 17 see, feed, or bathe myself. I only know I will face
- 18 trouble resulting from my injury. I sleep on the first
- 19 floor of my home in a hospital bed, and I no longer can
- 20 use stairs unsupervised.
- 21 My mother and brother have been sleeping on

TranscriptionEtc.

- 1 couches near me out of concern for my safety. I now
- 2 possess a handicap placard and a wheelchair which I
- 3 frequently use. I can barely leave my home except for
- 4 medical or religious reasons, and even then, my family
- 5 has to carry a bookbag full of safety equipment to make
- 6 sure I don't fall or injure myself.
- 7 For nine months, I and my family have
- 8 relentlessly pursued diagnosis and treatment only to be
- 9 met with apathy, sarcasm, and condescension from most
- 10 of the medical community, affiliated personnel,
- 11 mainstream media, and society at large. Rather than
- 12 provide a much-needed follow-up and resources for
- 13 treatment, I often refer to the Psychology Today
- 14 magazine or offered multi-state travel to find help.
- 15 When asking for understanding from a doctor
- 16 about the vaccine side effects, since you the FDA are
- 17 not releasing this data, I was told that, and I quote,
- 18 we don't know how aspirin works. My medical care has
- 19 been continuously impeded due to your unwillingness to
- 20 make public the facts about the mRNA technology of this
- 21 vaccine; which Dr. Malone himself stated to have

- 1 cytotoxic properties. This dearth of information robs
- 2 doctors of the knowledge they need to accurately
- 3 diagnose and care for vaccine-injured patients such as
- 4 myself.
- 5 You created a social media toolkit, to quote,
- 6 fight vaccine hesitancy. But it seems more likely that
- 7 you're concerned with fighting public descent. This
- 8 country was founded on the idea that we the people
- 9 should be free to make informed decisions for
- 10 ourselves. How can free people make free decisions if
- 11 after every controversy there's a coverup? How can you
- 12 expect us to trust you when you don't trust us with
- 13 accurate information? How can you say you care, when
- 14 you turn away those who come to you for aid? Time and
- 15 again you admit to (inaudible) harm to the American
- 16 people, exchanging their health for profit.
- Obesity, heart disease, and cancers kill more
- 18 than anything else because you pedaled processed sugar,
- 19 tobacco, and the scientifically unfounded food pyramid.
- 20 Proverbs 3:27 commands you to not withhold good from
- 21 those to whom it is due, when it is in your power to do

- 1 it. We are not acres of skin to be harvested and
- 2 experimented upon. We, too, are the free people of the
- 3 United States of America and we demand fair treatment,
- 4 justice, and equality as is our God-given right. thank
- 5 you for your time.
- 6 DR. PRABHAKARA ATREYA: Thank you. The next
- 7 speaker is Ms. Tanya Grisham.
- 8 MS. TANYA GRISHAM: Hello, I am Tanya Grisham.
- 9 Before my Pfizer vaccine on July 29th, I was a healthy
- 10 48-year-old with no medical problems and on no
- 11 medications. I helped my husband with his business, I
- 12 worked, I ran the household, volunteered, vacationed,
- 13 and I had a social life.
- 14 After my Pfizer vaccine, I quit social
- 15 functions because of revolting, painful, hyperacusis.
- 16 I lost 30 pounds in less than three months. I had
- 17 diarrhea, excessive sweating, and barely got three
- 18 hours of sleep a night. For over two months after
- 19 vaccination, my head and neck pain were compounded with
- 20 brain fog and paraesthesis, inability to stand, vision
- 21 changes, and hair loss. I had to force myself to do

- 1 basic daily functions.
- I honestly thought I was going to die. This
- 3 experience has been hell. My 21-year-old son had to
- 4 put his life on hold and move home to help me. I have
- 5 been so ill that I forgot my 20th wedding anniversary.
- 6 My husband didn't care that I forgot our anniversary,
- 7 he held me as I cried and told me it was okay. It took
- 8 months of doctors visits and \$8,000 in medical bills,
- 9 but I finally had three doctors confirm that I am, in
- 10 fact, suffering from vaccine side effects.
- I don't have any answers to when, or if, I
- 12 will ever fully recover. I miss my former life. I'm
- 13 begging the FDA to do your job and acknowledge the
- 14 injured. You've known we exist. The medical community
- 15 should be aware of us. We are desperate for treatment.
- 16 There seems to no effort in researching us. Just last
- 17 month, three members of our community committed suicide
- 18 because they could no longer live with their
- 19 debilitating side effects. Our lives matter. We
- 20 should not be expendable. We should not be abandoned
- 21 in our time of need.

- 1 Thank you for your time.
- DR. PRABHAKARA ATREYA: Thank you. The next
- 3 speaker is Jasmine Walker.
- 4 MS. JASMINE WALKER: Hello, my name is Jasmine
- 5 Walker. I have no relevant conflicts of interest.
- 6 Today marks 8 months and 3 days post one dose of Pfizer
- 7 vaccine. The nightmare that I would have never
- 8 imagined would happen just by simply trying to do the
- 9 right thing. I've been to multiple ER and doctor visits
- 10 with no help or knowledge on what to do with us
- 11 injured.
- Now I am suffering from an autoimmune disease,
- 13 neuropathy, insomnia, and neurological issues. So many
- 14 other side effects mostly dealing with the brain. From
- 15 tremors, brain fog, and unexplained lesions.
- 16 Previously healthy, 33 years old, single mom of two
- 17 special needs children who solely depend on me. This
- 18 experience has been debilitating and ongoing which has
- 19 caused me to almost lose my job and accumulating so
- 20 many medical bills and not receiving any assistance
- 21 from the government or health systems.

- 1 People are losing their life due to these
- 2 vaccines. Some of us are losing everything we've
- 3 worked so hard for because these injuries are
- 4 debilitating. These side effects are not even being
- 5 mentioned as being any of the side effects. We're
- 6 being swept under the rug and unheard. We need help,
- 7 we need to be heard, and we need for people to be
- 8 informed on risks that are associated with these
- 9 dangerous vaccines.
- 10 Please help us, we need to be heard and
- 11 acknowledged. I'm here today to be heard and for so
- 12 many others who are injured, and for our children.
- 13 Please don't ruin their lives with these vaccines that
- 14 are not even doing the job. We are being ignored. We
- 15 need you to do your job and to please hear our cries.
- 16 We are pleading for you to hear us and all of us
- 17 injured who did our part to keep everyone safe are
- 18 suffering just as we did our part to help not spread
- 19 this deadly disease.
- We need the FDA and medical community to help
- 21 us injured from these debilitating side effects.

- 1 Please take us seriously. We need you now more than
- 2 ever. We are in pain, and we need to be heard. We
- 3 need our lives back. This new life I would never wish
- 4 upon my worst enemy. I don't want another human being
- 5 to suffer like us injured have been suffering every
- 6 single day. Every single day we wake up it's another
- 7 day we wake up thankful that day that others did not --
- 8 who's also tried to do the right thing. Where there
- 9 are risks, we should have choices, and at the moment
- 10 that is not being honored.
- 11 This was not supposed to happen, and it could
- 12 have been avoided and it needs to be. The data was
- 13 known and ignored which is now why so many are injured
- 14 and could've been avoided. Thank you for your time.
- 15 DR. PRABHAKARA ATREYA: Thank you. The next
- 16 speaker is Mr. Matt Matlock.
- 17 MR. MATTHEW MATLOCK: Hello, my name is
- 18 Matthew Matlock. I have no financial conflicts. These
- 19 are my own words. I'm 38 years old, a combat veteran,
- 20 and father of two young girls. And going into the last
- 21 summer I was in the prime of my life. I was a top

- 1 performer in a large technology firm in the bay area
- 2 and at the peak of health and fitness having just
- 3 completed a half iron man. All of that changed after
- 4 the second dose of the Pfizer vaccine.
- I spent the first two and a half months either
- 6 in the ER, at doctors appointments, or in bed. I was
- 7 ignored, gaslighted, and told there was no way the
- 8 vaccine caused my issues. Thankfully, I'm stubborn and
- 9 kept searching for answers, until I found physicians
- 10 who would listen and were willing to admit that anxiety
- 11 was in fact not the cause of my heart inflammation,
- 12 mass cell issues, radically varying blood pressures,
- 13 tachycardia, gray skin tone, purple hands and feet,
- 14 neuropathy, and Epstein Barr reactivation.
- 15 I'm not going to compromise the rest of my
- 16 time on this call sharing with you what an incredibly
- 17 frustrating experience this has been and how mainstream
- 18 medicine has completely failed us. I choose to spend
- 19 the remainder of my three minutes pleading with you to
- 20 consider the following.
- Number one, research and diagnostics. The

- 1 same old bloodwork and scans aren't cutting it. We
- 2 need to think outside the box, and fast. Why were we
- 3 affected when others weren't? What markers can we
- 4 identify that will facilitate a diagnosis? These are
- 5 some of the questions we need answers to. We did our
- 6 part, you assured us this was safe, we are suffering.
- 7 It's time the government stepped up and put money and
- 8 resources towards this effort.
- 9 Number two, treatment. The leading free
- 10 options that have shown the most promise are Bruce
- 11 Patterson's cytokine and inflammation treatment, Razio
- 12 Patore's (phonetic) triple threat of anticoagulant,
- 13 antiplatelet, and ASA, and Dr. Jaeger's Help Apheresis.
- 14 Please connect with these groups to learn more about
- 15 their work. Come up with a plan to create a coalition
- 16 to connect groups like these and mainstream
- 17 institutions like the Mayo Clinic.
- Number three, compensation. To date, CIPC has
- 19 compensated zero claims. People are losing their jobs,
- 20 their insurance, their house, and are in debt hundreds
- 21 of thousands of dollars; are you going to sit here and

- 1 tell me they were simply dealt a bum hand and that they
- 2 and their families will now suffer for generations as a
- 3 result with zero assistance or recognition.
- Which brings me to my final point,
- 5 acknowledgment. Stop making decisions to shield
- 6 information from the public for fear of vaccine
- 7 hesitancy. Manipulated data and censored information
- 8 is not informed consent; it's deception. Shielding
- 9 COVID and vaccine data from the public is borderline
- 10 criminal behavior. Start by educating physicians on
- 11 the actual data and what to look for so they can
- 12 effectively treat their patients. I realize this is a
- 13 complex issue to tackle with an endless amount of entry
- 14 points, but please do not let this be a reason for
- 15 inaction.
- When your house is burning you don't start
- 17 worrying about how other homeowners are going to feel
- 18 about seeing another house on fire and then pontificate
- 19 on the best PR strategy to combat misinformation around
- 20 home fires. You roll up your sleeves and you pick up a
- 21 goddamn hose. Please act fast, millions of lives are

- 1 counting on you. Thank you.
- DR. PRABHAKARA ATREYA: Thank you. The next
- 3 speaker is Daniela Clark. Ms. Clark.
- 4 MS. DANIELA CLARK: Hello, my name is Daniela
- 5 Clark. I have no relevant conflict of interest to
- 6 declare. I'm a 45-year-old wife and mother of two
- 7 daughters. I was healthy and active before getting the
- 8 Pfizer vaccine. I received my first shot on August
- 9 11th. I only felt an achy arm that night, no other
- 10 symptoms. I received the second Pfizer vaccine on
- 11 September 1st. That night, my arm felt achy, and I
- 12 noticed the same achy feeling in my spine.
- I went to sleep and woke up the next day with
- 14 wrist pains, later that week they progressed to arm
- 15 muscle pains. Then about a week later the neurological
- 16 symptoms started. One day I scratched my face, but it
- 17 felt like my hands weren't getting the full message
- 18 from my brain. As if they were only receiving about 60
- 19 to 70 percent of the command. It was like a numbness.
- 20 My hands continue feeling this way. My
- 21 symptoms then progressed to weakness in my legs, severe

TranscriptionEtc.

- 1 sensitivity to sound. Tinnitus, tremors, twitches,
- 2 insomnia, brain fog, head fullness, and burning
- 3 neuropathy. My life went from wonderful to horrific
- 4 because of the vaccine.
- 5 Simple things like eating dinner with my
- 6 family became difficult. The noise sensitivity was so
- 7 intense that I could no longer sit with them. The
- 8 sound of people talking and of their forks touching
- 9 their plates was too much for me to bear. Everything
- 10 that made me happy was taken from me. I couldn't go to
- 11 my daughters' sporting events. I couldn't go to dinner
- 12 with friends. I could barely leave my house. I felt
- 13 so sick I was constantly throwing up. I ended up
- 14 losing 20 pounds.
- 15 Another symptom that I experience every single
- 16 day is burning neuropathy. It feels as if someone
- 17 rubbed sandpaper on my skin. Other parts feel hot,
- 18 like a sunburn. I also now have tinnitus. It's
- 19 something that I hear all the time, it never stops.
- 20 It's like a buzzing alarm constantly going off in my
- 21 head. The weakness in my legs has consistently gotten

- 1 worse. It's scary for me to think about what my future
- 2 may be.
- I went from a normal healthy life to a life of
- 4 chronic pain and uncertainty because of the vaccine. I
- 5 have seen the best doctors located in my area. They
- 6 all agree that the vaccine has caused a neurological
- 7 inflammatory response, but they have no idea or
- 8 direction on how to help me. The FDA tells them that
- 9 the vaccine is safe and effective. They don't know
- 10 that it can cause small fibre neuropathy or any of the
- 11 neurological symptoms that I'm experiencing.
- 12 They need to hear it from you. They need to
- 13 know that the vaccine can cause chronic neurological
- 14 symptoms. We need research, we need the government to
- 15 fund research to help us find treatments. Doctors need
- 16 studies that they can reference when treating us.
- 17 Adverse reactions to the vaccines are happening. We
- 18 need you to acknowledge our adverse reactions. We need
- 19 research, we need treatment options. Please help us.
- DR. PRABHAKARA ATREYA: Okay, thank you. The
- 21 last speaker for this section is Ms. Pamela Warren.

- 1 MS. PAMELA WARREN: Good afternoon, my name is
- 2 Pam Warren, 48 years old. I have no conflicts of
- 3 interest. I was vaccinated on January 8th, 2021, and
- 4 again February 8th, 2021. Both times, Moderna. At the
- 5 time, I worked at the American Red Cross running
- 6 apheresis machine collecting life-saving blood for
- 7 blood banks. This required starting IVs with precision
- 8 over and over during my shift.
- 9 As a healthcare worker, I was eager to get
- 10 vaccinated to protect myself and the people I worked
- 11 with. I got vaccinated early without any hesitation.
- 12 I believed that these vaccines were safe and effective
- 13 as promised. I trusted the system. Things didn't go
- 14 as planned. A host of complications followed until
- 15 eventually, I was unable to start IVs due to severe
- 16 tremors and involuntary movements in my arm and a long
- 17 list of other side effects.
- I had one patient ask if I had suddenly got
- 19 Parkinson's disease since the last time I saw her four
- 20 months prior. I had to quit my job. I was no longer
- 21 effective because I lost my steady hand and other

- 1 complications with my health were contributing to
- 2 severe brain fog. I posed a risk to people I served.
- 3 I was making mistakes that could hurt or kill a donor
- 4 or a blood recipient.
- 5 For several months, I could not care for my
- 6 children or myself. For eight months, I was too weak
- 7 and sick to make one family meal, something I did
- 8 easily -- with ease -- before the vaccine. My husband
- 9 took care of all aspects of our home life. He is the
- 10 COO of 40 primary care providers, MDs who are our
- 11 friends, and even they didn't know how to help me.
- 12 Their hands were tied.
- 13 Healthcare practitioners were unaware of the
- 14 possibility of my rare side effects, and I was left to
- 15 cope alone. I was suffering without recognition,
- 16 acknowledgment, or answers, getting weaker and sicker -
- 17 45 pounds in only a few months and still no answers
- 18 or help. It took six months and nine doctors to get an
- 19 urethra (inaudible) diagnosis. My life will never be
- 20 the same.
- I stumbled upon communities for injured people

- 1 who are forming support groups. These groups helped me
- 2 find direction to healthcare providers that were
- 3 pioneering a path for the injured. The vaccine injured
- 4 began to take care of each other. Collecting data,
- 5 explaining what types of specialists could maybe help.
- 6 Why did it become the injured's responsibility to do
- 7 this? The food and drug administration is responsible
- 8 for protecting the public. It's time for this to
- 9 happen. We, the injured, should no longer carry this
- 10 burden. It is in the FDA's very mission statement to
- 11 protect us.
- We need this to happen now. People are
- 13 suffering with no end in sight. We need your influence
- 14 and expertise. Thank you.
- 15 DR. PRABHAKARA ATREYA: Thank you. And this
- 16 concludes the open public hearing session for today.
- 17 Thank you. And then Dr. Monto, could you start the
- 18 next session, please?
- 19 DR. ARNOLD MONTO: Thank you, Prabha. We now
- 20 move back onto the published agenda. We next hear from
- 21 Dr. Jerry Weir, who will give us the proposed framework

1 for addressing future COVID-19 outbreaks. Dr. W	leir
---	------

2

3 PROPOSED FRAMEWORK FOR ADDRESSING FUTURE COVID-19

4 VACCINE STRAIN COMPOSITION

5

- 6 DR. JERRY WEIR: Thank you. This is the last
- 7 of the presentations, and I hope that it will serve as
- 8 an entryway into our discussion topics. I'll start
- 9 here. Okay, so as an introduction -- brief
- 10 introduction. The FDA and its public health partners
- 11 will need to make decisions regarding updating the
- 12 composition of COVID-19 vaccines in the U.S. and the
- 13 potential use of additional booster doses.
- 14 The Committee will be asked to discuss the
- 15 process that would be used to update the composition of
- 16 COVID-19 vaccines in the U.S. in consideration for use
- 17 of additional booster doses. The discussion following
- 18 this talk will focus on when should such decisions be
- 19 made and how such decisions should be made. In other
- 20 words, what are the criteria?
- 21 I'll remind you of what was stated at the very

- 1 start of the meeting a few hours ago. Today's
- 2 discussion is not intended to make specific
- 3 recommendations for vaccine composition or the use of
- 4 additional booster doses, but it is to get the
- 5 conversation started. One quick slide of background,
- 6 currently authorized and licensed COVID-19 vaccines are
- 7 based on SARS-CoV-2 virus that circulated in the
- 8 pandemic. Virus evolution was apparent within months
- 9 after the beginning of the pandemic and has resulted in
- 10 the emergence of SARS-CoV-2 variants, some of which
- 11 have become locally dominant such as beta in South
- 12 Africa, or even globally such as Delta and Omicron.
- Some of these variants have been more
- 14 infectious, transmissible, and/or virulent compared to
- 15 the earlier virus strains, and antigenic differences
- 16 between certain variants and earlier virus strains have
- 17 resulted in at least partial escape from natural or
- 18 vaccine-elicited immunity.
- 19 As a result of this, composition of current
- 20 COVID-19 vaccines may need to be updated to maintain
- 21 vaccine effectiveness against clinically relevant

- 1 variants. The annual influenza vaccine strain
- 2 selection process may provide some insights on how to
- 3 consider updating the composition of COVID-19 vaccines.
- 4 We touched on this a few minutes ago, but I want to
- 5 spend the next three slides going through this in a
- 6 little bit of detail to highlight some the key points
- 7 as they might relate to compositions of COVID vaccines.
- 8 Okay, the first of the three slides for the
- 9 review of the influenza vaccine strain selection
- 10 process. Each year any of the previous four influenza
- 11 virus vaccine strains may be replaced with a new
- 12 strain. These strain changes are necessary to maintain
- 13 vaccine effectiveness against predominant circulating
- 14 wild-type strains of influenza virus. As you heard
- 15 earlier from Kanta Subbarao, the WHO global influenza
- 16 surveillance continuously monitors evolution and spread
- 17 of influenza virus strains, and twice a year the WHO
- 18 convenes an invitation-only consultation of experts to
- 19 review and analyze data and make recommendations for
- 20 the composition of the influenza virus vaccines for the
- 21 Northern and Southern Hemispheres respectively.

- 1 The same questions get asked at each one of
- 2 these composition meetings, and these are relevant to
- 3 COVID-19 vaccines, too. Are new, and in the case of
- 4 influenza, drifted or shifted influenza strains
- 5 circulating? Are these new viruses spreading in
- 6 people, do the current vaccines provide protection
- 7 against new circulating strains of virus, and can new
- 8 vaccines with well-matched antigens be manufactured in
- 9 a timely manner?
- 10 Slide number two in this group. The WHO
- 11 consultation reviews and analyzes data on global
- 12 epidemiology and the genetic and antigenic
- 13 characteristics circulating seasonal influenza viruses.
- 14 Following the review and analysis, the WHO consultation
- 15 makes recommendations for the composition of the
- 16 influenza virus vaccines. The February consultation
- 17 makes recommendations for this, the next Northern
- 18 Hemisphere influenza season and the vaccine is
- 19 available in about five to six months.
- The September consultation makes
- 21 recommendations for the subsequent Southern Hemisphere

- 1 influenza season and vaccine is usually available in
- 2 about three to four months. As always, the WHO notes
- 3 the national or regional authorities approve the
- 4 composition and formulation of vaccines used in each
- 5 country. To do that, the FDA then convenes its
- 6 Vaccines and Related Biological Products Advisory
- 7 Committee, or VRBPAC.
- 8 This committee, approximately one week after
- 9 each WHO consultation to make recommendations for the
- 10 composition of influenza vaccines in the U.S. At that
- 11 composition meeting of VRBPAC, the committee hears
- 12 presentations on virus surveillance in the U.S. as well
- 13 as global surveillance effectiveness data for the most
- 14 recent vaccines, and the availability of key vaccine
- 15 reagents, and comments from manufacturers on the
- 16 practical aspects of changing vaccine composition.
- 17 Following review and discussion, the VRBPAC votes on
- 18 the strains to be included in the influenza virus
- 19 vaccines for the U.S.
- 20 After that, manufacturers submit a supplement
- 21 to their license to incorporate the latest vaccine

- 1 composition recommendation and following FDA approval
- 2 the manufactures distribute updated vaccine in time for
- 3 the upcoming influenza season. So that is, in a
- 4 nutshell, what happens with influenza selection.
- 5 So, why does this process usually work? Well,
- 6 you've heard some of this already today, but the
- 7 predictable seasonality of influenza. Another reason
- 8 is that most influenza vaccines are of similar
- 9 platforms. Even today, most of our vaccines are egg-
- 10 based, but regardless of the platform, the timelines
- 11 necessary for updating vaccines are fairly similar for
- 12 all manufacturers. The virus genetic and antigenic
- 13 data used for decision-making are generated by the WHO
- 14 collaborating centers, the essential regulatory labs,
- 15 and other WHO reference laboratories.
- I'm not going to talk much more about this,
- 17 but it is something to keep in mind that the source of
- 18 the data that's used to make that strain selection
- 19 decision. Another reason the process usually works is
- 20 animal sera and in-vitro data reliably distinguish
- 21 antigenically different viruses. These antigenic

- 1 differences among viruses generally predict differences
- 2 in immunogenicity and the corresponding clinical
- 3 response to vaccines. Because of the predictive power
- 4 of the in-vitro antigenic data, as well as extensive
- 5 manufacturing experience, new clinical data not
- 6 required for an updated influenza vaccine.
- 7 And this is definitely something to keep in
- 8 mind as we talk about COVID-19 vaccines. There are
- 9 some times when the influenza updating process does not
- 10 work well. Estimates for vaccine effectiveness for
- 11 influenza vaccines are only approximately 60 percent in
- 12 the overall population even when the vaccine is well
- 13 matched to circulating viruses. But the effectiveness
- 14 is substantially reduced, especially on highly
- 15 susceptible populations. For example, the elderly when
- 16 there is a poor match.
- 17 Vaccines that are less well-matched
- 18 circulating influenza viruses can result for different
- 19 reasons. I've highlighted two of which are also maybe
- 20 applicable when we consider maybe changing COVID-19
- 21 vaccines. One of the most notable is, of course,

- 1 antigenically distinct viruses may emerge after the
- 2 recommendations have been made and these viruses could
- 3 co-circulate or even dominate over the recommended
- 4 vaccine strains.
- 5 Everyone remembers the 2009 H1N1 pandemic
- 6 virus. This emerged in the spring following the normal
- 7 seasonal recommendation in the preceding February. But
- 8 even more recently, their examples such as in 2014 of
- 9 the H3N2 drift variant. At the time of the composition
- 10 meeting, this particular virus -- there were only about
- 11 one percent of all virus isolates were of this type,
- 12 but by September two-thirds of all virus isolates were
- 13 this type. So, this is an example of something that
- 14 existed but then became dominant over the course of the
- 15 following month.
- There are also manufacturing issues, and
- 17 sometimes these cannot be resolved in a timely manner
- 18 in these preclude production of a well-matched vaccine.
- 19 It's well known for influenza vaccines that their
- 20 effects due to egg adaptations -- amino acid changes
- 21 that are due to egg adaptations. But sometimes there

- 1 are difficulties in deriving high growth candidate
- vaccine viruses.
- Now both of these examples are probably unique
- 4 to influenza virus vaccines, but what I wanted to do
- 5 was highlight the point that manufacturing issues are
- 6 always something that have to be considered when one
- 7 makes any change to a vaccine. For influenza, there
- 8 are some contingency plans that are available in
- 9 situations of severe mismatch. And there have been
- 10 examples of supplemental vaccines that have been made.
- 11 Usually, this means that both the WHO as well
- 12 as the national regulatory authorities like the FDA
- 13 convene and make a decision to make supplemental
- 14 vaccines. The 2009 pandemic model valent vaccine was
- 15 one of these, but there were other examples as far back
- 16 as 1986 when the supplemental vaccines were made.
- 17 Now, clearly, this is an example of framework
- 18 that one could consider for how one might make changes
- 19 to COVID-19 vaccines, but there are obvious challenges
- 20 to adapting such a model. The influenza model to
- 21 COVID-19 strain composition decisions, and I think I

- 1 have several slides that just list some of these. Some
- 2 of these may have already been mentioned earlier in the
- 3 day, but we'll go through them again just so that we're
- 4 aware of all the things that one needs to keep in mind.
- 5 SARS-CoV-2 variants have not appeared in a
- 6 predictable seasonal pattern, at least not yet, and
- 7 they have not always spread globally. Nevertheless, as
- 8 you saw in some earlier presentations, there have been
- 9 substantial ways of -- a virus weighs each of the past
- 10 two winters. They're also, unlike influenza, they're
- 11 actually more types of vaccines being developed and
- 12 produced for COVID-19. These multiple vaccines are
- 13 either in development authorized or license -- and as
- 14 you've heard in a couple of different talks -- several
- 15 manufacturers are evaluating vaccines with updated
- 16 compositions.
- 17 These include variant specific model valent
- 18 vaccines as well as some multivalent combinations, and
- 19 these clinical trials are ongoing and in various stages
- 20 of progress. We hope that some data from these trials
- 21 will become available over the next few months. It's

- 1 important to note that the development of modified
- 2 COVID-19 vaccines by the different manufacturers, these
- 3 trials are not being currently coordinated with a
- 4 respect to string composition being evaluated. I think
- 5 Dr. Johnson touched on this during his talk. And also
- 6 I think he touched on the fact that time needed to
- 7 manufacture an updated COVID-19 made different
- 8 significantly depending on the vaccine platform, as
- 9 well as the things like the manufacturers' experience
- 10 as well as manufacturing capacity.
- 11 Some more challenges to adapt in the influenza
- 12 model. Because of limited experience to date, FDA
- 13 currently requires vaccine-specific clinical safety and
- 14 effectiveness, immunogenicity, data to support
- 15 authorization of a modified COVID-19 vaccine from any
- 16 given manufacturer. This clearly adds to the time
- 17 involved in updating a COVID-19 vaccine.
- 18 There has been a recent update to our guidance
- 19 for industry of emergency use authorization for
- 20 vaccines to prevent COVID-19 -- this is in appendix two
- 21 -- evaluation of vaccines to address emerging SARS-CoV-

- 1 2 variants. This guidance is applicable to strain
- 2 change modifications of authorized or approved COVID-19
- 3 vaccines -- often called prototype vaccine --
- 4 expressing SARS-CoV-2 S-protein.
- It refers, in general, to vaccines of the same
- 6 platform and manufacturing process for both prototype
- 7 and modified vaccines, and the guidance only covers
- 8 valent modified vaccines but some of these
- 9 recommendations could be adapted for evaluation of
- 10 multivalent vaccines.
- 11 Modified vaccines are recommended to be
- 12 evaluated as a primary series and as a booster dose.
- 13 Evidence for effectiveness of these modified vaccines
- 14 will be derived from immunogenicity data, neutralizing
- 15 antibody against clinically relevant variants, and
- 16 demonstrated effectiveness -- and with demonstrated
- 17 effectiveness of the prototype vaccines. All of this
- 18 assumes neutralizing antibody to S as a major component
- 19 of the vaccine protective response.
- 20 And I think this is the third slide of some of
- 21 the challenges. Ideally, the process of changing the

- 1 COVID-19 vaccine would be coordinated globally, you
- 2 heard from the WHO presentation a couple of hours ago.
- 3 Nevertheless, global coordination may be challenging
- 4 due to a lot of factors. One, is of course the
- 5 unpredictable nature of SARS-CoV-2 evolution. As well
- 6 as regional differences in variants of concern,
- 7 circulation or dominance. There are also different
- 8 regional levels of vaccination coverage and type of
- 9 vaccines that are in use in different parts of the
- 10 world.
- And, as I've already mentioned in one of the
- 12 previous slides, there is a variable timeline for the
- 13 availability of the clinical data for different
- 14 vaccines that might support the need for a modified
- 15 vaccine.
- In other words, taken together implementing
- 17 and coordinating a global process will likely take some
- 18 time. And I remind you that the influenza global
- 19 coordinated process has been a process for years and
- 20 really decades and it does take time to get all of this
- 21 into place. I think for us, we think that a process

- 1 for updating the composition of COVID-19 vaccines in
- 2 the U.S. will need to be flexible as well as orderly,
- 3 transparent, and data-driven. And we'd like the
- 4 committee to consider -- give some consideration to
- 5 scheduling a periodic review of COVID-19 epidemiology
- 6 and the available clinical data for vaccines against
- 7 variants of concern.
- 8 This slide lists some of the basic conditions
- 9 that would be necessary to make any recommendation for
- 10 changing a COVID-19 vaccine composition. First of all,
- 11 the epidemiology data need to identify an antigenically
- 12 distinct variant or variants that are likely -- that
- 13 either are or will likely become dominant. There needs
- 14 to be immunogenicity and effectiveness data that
- 15 indicates that current COVID-19 vaccines provide
- 16 insufficient protection against circulating variant
- 17 viruses. And then there needs to be data to justify
- 18 such a recommendation for changing the composition, and
- 19 that needs to be available from at last one, and
- 20 ideally more than one, COVID-19 vaccine.
- In other words, we need clinical data to help

- 1 us make a recommendation for a change, as well as each
- 2 manufacturer that would implement that change would
- 3 have to supply -- and this is the fourth bullet --
- 4 their own clinical data to support the safety and
- 5 effectiveness of their modified vaccine. And, of
- 6 course, any one of the very basic conditions is that
- 7 vaccine manufacturers will have to be able to
- 8 manufacture and deliver a modified vaccine in
- 9 sufficient quantities and in a sufficient timeline to
- 10 make an impact.
- I think I have two slides now to show, once
- 12 again, the complexity of this. Some additional
- 13 questions that would need to be considered in any
- 14 strain composition decision. And these are some
- 15 questions. Does the available clinical data support
- 16 changing the strain composition of vaccines currently
- 17 in use? Should modified vaccines be monovalent or
- 18 multivalent? What strain should be included? Does the
- 19 available clinical data indicate how well a modified
- 20 vaccine would impact breadth of coverage against
- 21 circulating and potentially emergent viruses?

- 1 The breadth of coverage considerations
- 2 different for vaccines used as primary series or
- 3 booster series or booster doses. Some more questions.
- 4 How often should the composition of COVID-19 vaccines
- 5 be reviewed for a possible composition update? Should
- 6 this be something like yearly, like for influenza, or
- 7 should be as variants of concern appear and become
- 8 dominant? Are there and what should be any contingency
- 9 plans that we should consider in case a novel SARS-CoV-
- 10 2 virus emerges and is not covered by available
- 11 vaccines?
- If the strain composition is recommended, how
- 13 is a smooth transition to a use of a modified vaccine
- 14 implemented? And by saying this, I remind you that
- 15 recommendations for seasonal influenza vaccines apply
- 16 to all influenza vaccines and those vaccines have a
- 17 dating period that eliminates any possible confusion
- 18 among the different recommended vaccines.
- 19 And finally, this is probably a little too
- 20 much to get into today, but it's worth keeping in mind,
- 21 and that is what additional data or experience could

- 1 expedite the process for COVID-19 vaccine composition
- 2 changes by limiting or obviating the need for clinical
- 3 data? Which, I've already told you is something we
- 4 would still insist on, at least at present time.
- 5 So, this slide presents a framework. I remind
- 6 you before I even read it that the framework is
- 7 tentative, it is thrown out to be a placeholder to spur
- 8 the discussion that's hopefully going to follow, and
- 9 nothing is etched in stone. We would presume that we
- 10 would meet again, talk to this with the VRBPAC, but we
- 11 would like to get the conversation started.
- But we start with assuming that the FDA would
- 13 seek the advice of the VRBPAC to make recommendations
- 14 for any change in composition of an authorized or
- 15 approved COVID-19 vaccine in the U.S. We suggest that
- 16 on some routine basis -- and this is one of the topics
- 17 for the committee to talk about -- that on this routine
- 18 basis the FDA and VRBPAC would review the epidemiology
- 19 that's circulating in SARS-CoV-2 variants in the U.S.,
- 20 the effectiveness of available vaccines in use, the
- 21 available clinical data and manufacturing concerns for

- 1 modified vaccines in order to determine whether to
- 2 recommend an updated vaccine for use in the U.S.
- 3 We also suggest that there should be some
- 4 thought given to a collaborative plan -- this is going
- 5 forward -- that includes manufacturers, the FDA, and
- 6 other public health agencies to develop such a plan
- 7 that would provide the necessary clinical data needed
- 8 for the future vaccine composition decisions.
- 9 And then, any effort to make contingency plans
- 10 would be a good idea. These plans should be developed
- 11 to respond to any emerging variant that escapes
- 12 protection provided by currently available vaccines.
- 13 On the other hand, if the WHO makes such a
- 14 recommendation, the FDA and the VRBPAC would almost
- 15 certainly evaluate whether that recommendation should
- 16 be implemented for the U.S. with consideration given to
- 17 pretty much the same thing that I list at the top of
- 18 the slide.
- 19 The epidemiology of circulating SARS-CoV-2
- 20 variants in the U.S. The capability of manufacturers
- 21 of authorized vaccines to implement such a

- 1 recommendation in a timely fashion, and of course, as
- 2 I've already mentioned for each manufacturer, the
- 3 availability of clinical data to support the safety and
- 4 effectiveness of their vaccine.
- 5 And my last slide is considerations for use of
- 6 additional booster doses. A recommendation for
- 7 additional booster dose might follow a recommendation
- 8 for changing a COVID-19 vaccine strain composition that
- 9 occurs either as a result of a scheduled or an ad hoc
- 10 review of COVID-19 epidemiology and vaccine
- 11 effectiveness. Even if the available data continue to
- 12 support the use of a prototype vaccine going forward,
- 13 the periodic use of additional booster doses, for
- 14 example, annually similar flu is one example -- these
- 15 booster doses may still be needed to maintain adequate
- 16 immunity.
- 17 Any recommendations for the use and the timing
- 18 of additional booster doses should consider the goals
- 19 of the vaccination program, for example, preventing
- 20 morbidity and mortality as opposed to mild disease,
- 21 infection transmission, should consider which

- 1 populations the additional booster doses are warranted,
- 2 as well as practical and operational aspects of public
- 3 health vaccination.
- 4 So that's the end of the talk. The topics for
- 5 discussion are the same ones that Dr. Fink provided at
- 6 the very start of the meeting. Maybe I won't read
- 7 these now since we'll go back into them in a few
- 8 minutes. But I'll remind you again, they're not voting
- 9 questions. We know they're complex, we know they're
- 10 difficult, but we would appreciate any input, any
- 11 suggestions that the committee have -- like I said --
- 12 in order to get this conversation started rather than
- 13 wait until the next crisis to start talking about it.
- 14 So, I'll stop there.
- DR. ARNOLD MONTO: Well, thank you, Dr. Weir.
- 16 You've given us a lot to think about.
- 17 COMMITTEE DISCUSSION OF QUESTIONS

18

- 19 DR. ARNOLD MONTO: Well, thank you, Dr. Weir.
- 20 You've given us a lot to think about. And, what I
- 21 propose is that we start out with a discussion focusing

- 1 on your presentation, before we go into a more general
- 2 discussion looking at the specific questions that we
- 3 have been asked to answer. And I'll start out by
- 4 focusing, which is my biggest worry, on the timeline
- 5 the doc- (audio skip) --
- 6 DR. JERRY WEIR: I think I lost your sound.
- 7 DR. PRABHAKARA ATREYA: Dr. Monto, we can't
- 8 hear you.
- 9 MR. MICHAEL KAWCZYNSKI: There we are, Dr.
- 10 Monto, we got you. Okay, go ahead.
- 11 DR. ARNOLD MONTO: Okay. All right. You hear
- me now?
- 13 MR. MICHAEL KAWCZYNSKI: Yes, we hear you now.
- DR. ARNOLD MONTO: What I was saying is that
- 15 my concern is the relatively short timeline we have in
- 16 order to develop some (audio skip) clinical data. And
- 17 the date that we heard from Dr. Johnson, which was in
- 18 May, in order to be able to have things started and
- 19 available, doesn't that really (audio skip) --
- DR. JERRY WEIR: And, once again lost you.
- 21 MR. MICHAEL KAWCZYNSKI: Dr. Monto? He's

- 1 connected but he's having -- he's on his cell and I bet
- 2 you he's just dropping for a second there. So let's
- 3 just give him a moment.
- 4 DR. PETER MARKS: This is Peter Marks. I
- 5 think Dr. Monto is trying to say that there is a very
- 6 compressed timeframe to be able to make a decision
- 7 regarding the booster composition. Based on what was
- 8 presented by Dr. Johnson. So I think that's probably
- 9 what he was --
- DR. ARNOLD MONTO: That's exactly it, and I'm
- 11 worrying about the need for clinical trial data because
- 12 the clinical trial data has to come from existing
- 13 variants. You can't do a clinical trial on a variant
- 14 that's going to emerge.
- 15 DR. PETER MARKS: Right. I'll also tell you
- 16 that in conversation, just for the committee's
- 17 information, that probably we should be thinking of a
- 18 May to June timeframe here. There is probably some
- 19 wiggle room, but just not that kind of a lot more time,
- 20 but it's a little bit more time.
- DR. JERRY WEIR: Yes, and so we do think that

- 1 we're going to have some clinical data from some
- 2 manufacturers over the next couple of months. But,
- 3 back to what you just said, Dr. Monto. Even some data
- 4 on variants that may not be under consideration, may
- 5 help us understand how, for example, a bivalent vaccine
- 6 may work. So there are some things that we can learn
- 7 from whatever clinical information we can look at.
- 8 DR. ARNOLD MONTO: Okay, let's go on the
- 9 list. Dr. Meissner. And, next will be Dr. Bernstein.
- 10 I was asked to warn people in advance before they're
- 11 called. Dr. Meissner.
- DR. CODY MEISSNER: Thank you, Dr. Monto, and
- 13 Dr. Weir, such a provocative presentation. And the
- 14 problems are substantial. But it seems to me that one
- 15 of the first issues that need to be thought about is
- 16 listed in your slide number 12 that is the second
- 17 bullet. And it says, immunogenicity and effectiveness
- 18 data indicate that current vaccines provide
- 19 insufficient protection against the circulating variant
- 20 strengths.
- 21 And so the question is going to be, what is

- 1 insufficient protection? I mean, since we don't know
- 2 the correlates of immunity we're going to be so
- 3 dependent on hospitalization rates, death rates. And
- 4 that's where it will be so important for the CDC to be
- 5 able to give us accurate figures about hospitalizations
- 6 with COVID and hospitalization because of. But at what
- 7 threshold will we say, gee, you know, the current
- 8 vaccine is cross-protection but it's not adequate?
- 9 DR. JERRY WEIR: Yeah, obviously, that's a
- 10 judgement call and it's a tough question to answer.
- 11 Although we put in immunogenicity, we clearly wanted to
- 12 stress that effectiveness data is part of that
- 13 consideration. Again, this is not like influenza,
- 14 where one can look at in vitro data and actually make
- 15 that prediction that a difference in immunogenicity of
- 16 eight-fold in a HI assay really translates to a
- 17 decrease clinical benefit. So, yes, I do think it
- 18 needs to be defined, but I think the effectiveness of
- 19 current vaccines will be a key driver in determining
- 20 when that threshold, whatever it is, is reached. I
- 21 don't know if Dr. Fink or Dr. Marks wants to elaborate

- 1 on that, but, yes, it is a key question.
- 2 DR. CODY MEISSNER: Because I remember when
- 3 this question was asked of Pfizer, why they didn't work
- 4 off the Delta strain, and why did they continue to use
- 5 the Wuhan strain, the D614G mutated Wuhan strain. In
- 6 answer they put up a slide and showed that it induced
- 7 pretty good serologic protection against a variety of
- 8 mutants. And, you know, that was probable accurate.
- 9 So, at what point will we say the vaccine isn't working
- well enough?
- 11 DR. JERRY WEIR: Again, I think it's a tough
- 12 question. I think effectiveness data is probably going
- 13 to be one of the key drivers, because I'm not sure that
- 14 we can easily at this point in time point to a
- 15 particular drop in immunogenicity that we know
- 16 translates to that effectiveness data. Hopefully over
- 17 time we will get something like that, but I don't think
- 18 we can right now.
- 19 DR. CODY MEISSNER: Thank you.
- DR. ARNOLD MONTO: Let's move on. And I will
- 21 interject, Dr. Weir, that sometimes with influenza we

- 1 get into debates about whether small changes do or do
- 2 not result in significant drops in efficacy and this
- 3 here is a case in point. So, it's a mixed blessing
- 4 with having a pseudo correlate of protection with
- 5 influenza. Dr. Berger, I see the next hand is yours.
- 6 Dr. Berger?
- 7 DR. ADAM BERGER: Thanks. I'd like to
- 8 actually just follow up on what Dr. Meissner was just
- 9 talking about, which is, what is the real efficacy
- 10 we're looking for here? And, I think your slide and
- 11 I'll point it on Slide 16, which is, what's the goal of
- 12 vaccination program? Is it to reduce (audio skip)? Is
- 13 it to prevent (audio skip) disease? Is it to prevent
- 14 pertinent severe disease?
- And I think what we need to be cautious about
- 16 is making sure whatever we're indicating is the
- 17 efficacy here, that there is actually causality. I
- 18 think what we've seen so far, at least from the data
- 19 that we got today, is that even though prevention of
- 20 infection seem to be waning, it isn't seemingly having
- 21 a significant drop in the efficacy from severe disease

- 1 of hospitalization or death.
- And, so, I want to make sure that when we're
- 3 thinking of that, that the framework takes into account
- 4 the outcome that we're trying to achieve. Because we
- 5 could go down a bit of a rabbit hole and make changes
- 6 to a vaccine that maybe prevents infection but doesn't
- 7 actually alters the end result. So, what is it that
- 8 we're trying to get is a really important question for
- 9 us.
- If I could, I'd also like to just question --
- 11 or at least put out there. Manufacturing capacity
- 12 itself, it would be great to be able to hear directly
- 13 from the manufacturers as to what their capacity might
- 14 be. I think some of the points were made earlier that
- 15 who have potential for these new MRNA vaccines to help
- 16 develop that process a lot faster. It would be great
- 17 to be able to hear directly what kind of capacity they
- 18 might have. To for instance, continue the development
- 19 of an existing prototype vaccine while at the same time
- 20 being able to ramp up and scale for production of
- 21 possible mutant variants for development or even if by

- 1 valent at the same time that data's being collected.
- 2 So, it would be really good just to get an
- 3 understanding of that.
- The last point I'll make, and I promise I
- 5 won't go on much more, is just that the timing itself
- 6 seem to be based on that seasonality coming up and
- 7 trying to make sure that we're hitting at the same type
- 8 of timeline that we hit for flu vaccination rate. And
- 9 I'm not sure that right now the data support
- 10 seasonality for COVID-19 too. It might actually be on
- 11 a different timeline. I recognize that there are those
- 12 implementation questions about do we go ahead and try
- 13 to suggest that this would be given at the same time
- 14 you would give a flu vaccine or are we asking the
- 15 public to come in for a second shot -- is a huge one.
- 16 But I think it's just that question for the timing of
- 17 when we would actually need to make decisions may not
- 18 necessarily be tied to the same timeline that flu is.
- 19 DR. JERRY WEIR: Thank you for all of those
- 20 points. I would agree with all of them. They mention,
- 21 once again, some of the difficulties. I would make one

- 1 suggestion, though, that back to hearing directly from
- 2 the manufacturers. That is something that would be
- 3 good and maybe if we meet again within a few months
- 4 with some clinical data that at that time when the
- 5 manufacturers present some of that data, we also get
- 6 them to tell us what is realistic and practical for
- 7 their particular vaccine. So, maybe we can do that all
- 8 at the same time.
- 9 DR. ARNOLD MONTO: Thank you. Dr. Hildreth?
- 10 DR. JAMES HILDRETH: I just want to follow up
- 11 on a point that Dr. Meissner made earlier, which is
- 12 that about immune correlates. I brought this up in a
- 13 very first meeting that if we could determine an immune
- 14 correlate for these vaccines, it might expedite the
- 15 issue of identifying those that are going to be
- 16 successful and protective. Because it's going to be a
- 17 limited time to do this, given Dr. Bedford's
- 18 presentation and the population dynamic for this virus,
- 19 having an immune correlate that we could look to or
- 20 define and the serum of the vaccine recipient or
- 21 volunteers in trials will help us a great deal.

- 1 Is there any effort being made to focus in on
- 2 immune correlates, cytotoxic T-cells, (inaudible) T-
- 3 cells, something other than antibodies?
- 4 DR. JERRY WEIR: Yes. There's clearly a lot
- 5 of effort; I'm not sure I can give you the current
- 6 status on it. But there's definitely a lot of effort.
- 7 I couldn't agree with you more that that would make
- 8 life a lot simpler. And that I, like again, I'm a very
- 9 strong supporter of that. I think the more we can
- 10 understand that, the closer we can get to understanding
- 11 a correlate, all of our lives would be a lot easier.
- 12 And, yes, I'm sure there's a lot of effort going into
- 13 it.
- 14 DR. JAMES HILDRETH: Okay. Thank you.
- 15 DR. ARNOLD MONTO: Now, Dr. Bernstein.
- 16 DR. HENRY BERNSTEIN: Thank you. Such
- 17 challenging questions that you raise. And I do think
- 18 it's important, as you mentioned, the challenges to be
- 19 transparent and data-driven and the need for clinical
- 20 safety and effectiveness data to support authorization.
- 21 Picking up on what my colleagues were saying

- 1 before. You anticipate conceptualizing vaccine
- 2 effectiveness a priori and coming up with a minimal
- 3 acceptable estimate for the different outcomes that Dr.
- 4 Link-Gelles presented, a different estimate for
- 5 infection versus ED/urgent care versus hospitalization
- 6 and death?
- 7 DR. JERRY WEIR: It sounds like a good idea to
- 8 me, but somebody else such as Dr. Fink or Dr. Marks may
- 9 be better able to answer that.
- 10 DR. ARNOLD MONTO: Yeah, this brings up a
- 11 point. Should -- Jerry, do you want to be on the
- 12 firing line for this, or should this be a group
- 13 response? And, Dr. Fink, could you tell us, would you
- 14 like to be part of the firing line?
- 15 **DR. DORAN FINK:** I'm willing to help answer
- 16 questions, certainly. And, with the caveat that I feel
- 17 the pain of the committee; there are no easy answers
- 18 here. Just to respond to Dr. Bernstein's question. I
- 19 think we're talking about maybe two separate things.
- 20 First of all there's the question of whether currently
- 21 available vaccines are providing adequate protection.

- 1 That's what Dr. Meissner brought up. And how do we
- 2 know whether currently available vaccines are providing
- 3 adequate protection.
- And there Dr. Weir answered we're going to be
- 5 relying heavily, mainly on vaccine effectiveness
- 6 estimates, some studies such as the CDC has presented
- 7 earlier today. And we will need to ultimately decide
- 8 what threshold level is that we would consider to be
- 9 acceptable versus unacceptable. And I wish I had a
- 10 suggestion now, but I don't. And I would be interested
- 11 to hear the thoughts of the committee on this; on what
- 12 this sort of threshold might be.
- 13 And then there's the question of if we
- 14 determine that a strain change composition is needed,
- 15 how do we assess the safety and effectiveness of
- 16 modified vaccines that are based on a prototype vaccine
- 17 manufactured using the same platform?
- 18 And there Dr. Weir presented a slide that
- 19 referenced our UA guidance and specifically an appendix
- 20 in that guidance where we lay out the considerations --
- 21 and actually, at this time, the requirements -- for

- 1 clinical evaluation of modified vaccines, looking at
- 2 safety and looking at immunogenicity. These are not
- 3 large studies but they are designed to provide what we
- 4 think is the essential minimal information that one
- 5 would need to really feel comfortable deploying a
- 6 modified vaccine.
- 7 And, in terms of the immunogenicity data, if
- 8 you look into the details of that guidance and that
- 9 appendix, we requested a variety of immunogenicity
- 10 analyses using a variety of input viruses and
- 11 neutralizing antibody assays to assess the breadth and
- 12 magnitude of the immune response elicited by the
- 13 modified vaccine, in comparison to the prototype
- 14 vaccine.
- And it would be based on the totality of data
- 16 looking at those immunogenicity analyses in aggregate
- 17 that we would have to make a decision as to whether
- 18 there is a compelling reason, based on those
- 19 immunogenicity data, to conclude that the modified
- 20 vaccine would have an advantage over the prototype.
- 21 DR. HENRY BERNSTEIN: Thank you. Not easy to

- 1 answer.
- DR. ARNOLD MONTO: Okay, let's go on to Dr.
- 3 Gans.
- 4 DR. HAYLEY ALTMAN-GANS: Thank you very much.
- 5 I really appreciate the ability to have this
- 6 conversation about what it may take actually to
- 7 understand and control this pandemic moving forward. I
- 8 think one of the really obvious things that have come
- 9 up, and it hasn't been stated explicitly, so I think
- 10 that it's actually important to state, is that we're
- 11 using things like influenza or other respiratory
- 12 viruses, which are fairly settled and actually we have
- 13 a huge amount of information.
- And obviously what we're all grappling with is
- 15 that this is an unsettled environment in which we're
- 16 trying to move forward. And while it's helpful to use
- 17 some of these other platforms, obviously there have
- 18 been the obvious differences that have been pointed
- 19 out. And I think what's really important, and I
- 20 appreciate Dr. Weir, you saying like I think that we
- 21 actually have to come together with some of the

- 1 information that we've been asking for today, in a very
- 2 routine and systematic way moving forward, until this
- 3 is settled science. And that we actually can move to a
- 4 less frequent meeting of the minds.
- 5 And I think a couple of things that people
- 6 have really talked about but what I think the committee
- 7 needs to hear in order to actually make some of the
- 8 recommendations that has been asked of us and will be a
- 9 voting later on at some later point, are all these
- 10 ideas of correlates of protection. While everyone's
- 11 saying there are studies out there or things are
- 12 happening, I think there actually has to be explicit
- 13 information that this committee needs.
- 14 And it sounds like this committee needs really
- 15 more than neutralizing antibodies. We have some
- 16 correlates that people feel comfortable in influenza,
- 17 but actually several of us have actually even asked for
- 18 some of these other correlates for the influenza
- 19 information to make better decisions.
- 20 Anyway, so obviously T-cells are important.
- 21 And I think what people have fallen back on is really

- 1 trying to do complicated T-cell studies. And there
- 2 have been several labs that have done things like iCRA
- 3 (phonetic), for instances, that actually are helpful
- 4 and could actually move people forward potentially in
- 5 an easier way. And actually have them more
- 6 commercially available. The other thing is mucosal
- 7 immunity.
- 8 The other parts of it, and we've heard clearly
- 9 from the public and for individuals who would like to
- 10 hear more about the safety data. And so I think, while
- 11 it's been sort of, again, spoken about but not
- 12 explicitly stated, that we would need actually the
- 13 ongoing safety data. So we've put these very elaborate
- 14 systems, we have the VSV. We have the Prism. We have
- 15 lots of reporting data. We're not actually seeing that
- 16 being updated to the committee, and we would need those
- 17 to come along with it.
- And the last we would need, obviously, also,
- 19 updates on what platforms are coming forward. Because
- 20 in order to make decision about what it is that we're
- 21 being asked, which is current, we also need to know what

- 1 is actually in the pipeline, which we don't hear about
- 2 on a routine basis as well.
- And, so, those are some of the points that I
- 4 think would need to happen and as you suggest, Dr.
- 5 Weir, on some, particular cadence that we would all
- 6 need to come together with that information.
- 7 DR. JERRY WEIR: Thank you a lot; it's very
- 8 helpful.
- 9 DR. ARNOLD MONTO: Yes, and I agree that we
- 10 have insufficient information right now to give you in
- 11 any way precise comments on all of the discussion
- 12 questions. I had hoped that we would hear more about
- 13 some of the trials that are in the pipeline, clinical
- 14 trial, because this might help us in going forward.
- 15 And there are a lot of other things that we would need.
- We would also need a little more of a strawman
- 17 to discuss, something that you would propose, which you
- 18 almost did in one of your slides. Rather than more of
- 19 these open questions, such as, how often should the
- 20 adequacy of strain composition for available vaccines
- 21 be assessed? The answer to that is as many as you can,

- 1 as often as you can. So it's rather difficult to try
- 2 to opine about some of these points without additional
- 3 information. And, as I was saying (audio skip)
- 4 proposals, even though -- at least for discussion.
- 5 Having said that let me call on Dr. Rubin.
- 6 DR. ERIC RUBIN: I'm afraid I'm going to agree
- 7 largely but in part with Dr. Gans, but we can save that
- 8 for later. What I wanted to ask you about Dr. Weir is
- 9 specifically about the surveillance data that in your
- 10 slide set it said surveillance data for the U.S. But in
- 11 fact, when these viruses come to the U.S. it's really
- 12 too late. They spread rather quickly and that certainly
- 13 was the case with Omicron and with Delta. But there was
- 14 a lot of early waring in other countries. So, I guess I
- 15 would urge us to be considering those data as well.
- DR. JERRY WEIR: Yeah, I think what I was
- 17 trying to get across, though, is that if this committee
- 18 was presented with a recommendation, for example, from
- 19 WHO, I think we would have to ask ourselves what the
- 20 situation was in the United States. And that being,
- 21 although you're right that sometimes different variants

- 1 have spread globally, there's a couple of examples of
- 2 the Beta and the Gamma that did not. And, so, I think
- 3 we would have to evaluate the U.S. as well as the larger
- 4 picture. And that doesn't mean it's an easy call, but
- 5 we would have to look at it like that. We'd at least
- 6 have to look at our regional as well as the global
- 7 situation. I think that's what I was trying to get
- 8 across.
- 9 DR. ARNOLD MONTO: Dr. Offit.
- 10 DR. PAUL OFFIT: Yes, thank you. I guess what
- 11 I'm struggling with a little bit is use of the term
- 12 "booster." I agree with Dr. Berger's and Dr. Meissner
- 13 that a reasonable goal for this vaccine is protection
- 14 against serious illness. I mean this is a mucosal
- 15 virus, you know, like all mucosal viruses. Whereas
- 16 natural infection immunization can protect against
- 17 serious disease, it's not going to be very good at
- 18 protecting against mild diseases because neutralized
- 19 antibodies will last for several months but usually be
- 20 well down after six months, which is what we're seeing
- 21 here.

- 1 So, the good news is that at least to date, for
- 2 all the variants that we've seen, it looks like the
- 3 protection against serious illness is holding up. And
- 4 that is consistent with studies by people like John
- 5 Wherry and Shane Crotty, showing that you still have
- 6 high frequently of memory B cells, memory T cells, six
- 7 months, eight months, nine months later. So that's
- 8 good.
- 9 But I think the decision we have to make, it
- 10 seems to me, is when do we no longer see protection
- 11 against serious illness because a new variant has
- 12 arisen? And if that's true, is the word really
- 13 "booster"? Because, really, what are you boosting?
- 14 Usually when you boost, when you give a dose of vaccine
- 15 you're boosting neutralized antibodies.
- I would argue that if you, having variant that
- 17 is so distinct in terms of epitopes recognized by memory
- 18 B or T-cells, that you're no longer getting protection
- 19 against severe disease. Maybe what you're talking about
- 20 then is a primary series. I mean, you alluded to that,
- 21 Jerry, in one of your slides. And I think that's going

- 1 to be part of this.
- I mean, this virus isn't flu. You get a flu
- 3 vaccine every year in large part because even if you're
- 4 immunized or naturally infected the year before, you may
- 5 not be protected against severe disease the next year.
- 6 To date, protection against severe disease does seem to
- 7 be holding up so I guess I don't see it in exactly the
- 8 same way that I do the flu model where you need a yearly
- 9 vaccine. Those are just my thoughts. I'll be curious
- 10 to hear yours.
- DR. JERRY WEIR: Well, I think, you're right, I
- 12 mean, there's so much we don't know. But I think there
- is a worry that protection against severe illness won't
- 14 hold up forever. And that, therefore, one may need to
- 15 do -- you can call it booster, you can call it annual
- 16 vaccination, you can call it some periodic vaccination.
- 17 At some point that becomes semantics as much as anything
- 18 else. But I think that is still the worry is that the
- 19 drop in protection against some outcomes may portend the
- 20 drop in protection against the more severe ones that you
- 21 refer to. Again, there's just an awful lot we don't

- 1 know. But I think that's the worry.
- DR. PAUL OFFIT: I think the key player here,
- 3 and maybe Amanda Cohn can comment on this, is the CDC.
- 4 I mean, we need to have rapid access to protection data,
- 5 especially against severe disease, and that's where the
- 6 CDC can really help us. So, thank you.
- 7 DR. JERRY WEIR: Can I make one quick comment,
- 8 both for you and back to Dr. Monto? I mean, if we come
- 9 back to this committee and talk about this again, of
- 10 course we would bring in the CDC. We would bring in all
- 11 sorts of experts. And we would cover everything we
- 12 could before we would -- and we would throw out a
- 13 strawman for you to consider. So I think we would do
- 14 all of that in any sort of subsequent meeting.
- DR. ARNOLD MONTO: Dr. Marks, where do you want
- 16 us to go at this point? Because you can see that this
- 17 is a very broad discussion, not really focusing on some
- 18 of the questions that you would like us to answer. And
- 19 I really need some guidance about what would be helpful
- 20 to give you what you need today because we know this is
- 21 going to be a protracted process. Try to come up with

- 1 some of these conclusions that will guide future
- 2 thoughts about a process which really we have very
- 3 little time for; it's a period of months.
- DR. PETER MARKS: Thanks very much, Dr. Monto.
- 5 I think it might be helpful to put up the slides with
- 6 the questions and, perhaps, just see if anybody wants to
- 7 add anything as we go through and flip through this. I
- 8 think there were four in total. Would that be
- 9 acceptable?
- 10 DR. ARNOLD MONTO: That would be very good. I
- 11 think we will find that some of these points really are
- 12 not independent; they relate to each other. But, I
- 13 think we need instructions.
- DR. PETER MARKS: I completely agree with you
- 15 that some of these may -- but just to -- we have already
- 16 touch upon some of these.
- 17 DR. ARNOLD MONTO: Right, and some of them
- 18 really have no answers. Such as, how often should the
- 19 adequacy of strain composition -- that's going to be so
- 20 dependent on epidemic behavior and availability of data.
- 21 I could see in the best of all possible worlds, not

- 1 having a BA.2 wave and having a quiescent summer. That
- 2 would provide us with no additional data before the
- 3 winter if this virus is going to be showing seasonality.
- So, we really have to be very flexible in some
- 5 of the conclusions we come to. But the first point is
- 6 what considerations should inform strain composition
- 7 decisions, to ensure that available COVID-19 vaccines
- 8 continue to meet the public health needs and the role of
- 9 VRBPAC and FDA. That's relatively easier, if we talk
- 10 about what the role of VRBPAC and FDA are.
- DR. PETER MARKS: Now, I think --
- DR. JERRY WEIR: If it's easy, let's knock it
- 13 off then, Arnold.
- DR. PETER MARKS: I think that's right.
- DR. ARNOLD MONTO: Yes, let's do that, because
- 16 that's an easier one.
- 17 DR. PETER MARKS: So the idea here, I think,
- 18 that --
- 19 DR. ARNOLD MONTO: Especially since some of our
- 20 members would like to be opining as frequently as
- 21 possible.

1	DR.	PETER	MARKS:	Well,	just	to	understand
---	-----	-------	--------	-------	------	----	------------

- 2 here, one of the points of trying to have this meeting
- 3 was so that we would be able to open a dialog here about
- 4 the need for what we might expect, and the role of
- 5 VRBPAC and FDA in coordinating strain composition,
- 6 again, with the overlay of WHO, if they come up with a
- 7 recommendation, is to try to understand how you
- 8 coordinate this because we have multiple manufacturers.
- 9 We are talking about some vaccines in
- 10 development that might not be authorized or approved yet
- 11 that could also be coming into the mix. How do we
- 12 essentially unify what we're doing for a booster?
- 13 Because that was, I think, one of the principles to
- 14 discuss here is, is there some import into doing this
- 15 unification. Because one could say, well, just have
- 16 different boosters from different manufacturers. And if
- 17 somebody wants to make an Omicron monovalent, and
- 18 somebody else wants to make a bivalent Omicron
- 19 prototype, those would be just fine.
- On the other hand, I think that from a public
- 21 health perspective, at least what we thinking and I

- 1 think open for the committee's input, was that given the
- 2 potential confusing that could occur with that type of
- 3 an approach, in terms of our mixing and matching of
- 4 vaccines, it might be better to try to have a unified
- 5 approach with a strain selection or a variant selection
- 6 much the same as we do for influenza.
- 7 DR. ARNOLD MONTO: And further than that, the
- 8 point was raised about calling it a "booster." And what
- 9 if somebody, if we go into a scenario of vaccine
- 10 available, let's say, in October, what are the different
- 11 approaches for those individually who've not been
- 12 vaccinated before versus those that have. We're going
- 13 to go to the situation as we do with flu in young
- 14 individuals who have to get two inoculations as opposed
- 15 to those who would only have to have one.
- But the question you have given us is, what is
- 17 the role of VRBPAC and the FDA; and I think that is
- 18 something which we all feel we should have a major role
- 19 in. Question is exactly how and what the questions are
- 20 going to be. Let's take this out to the committee. Dr.
- 21 Nelson, you have your hand raised.

- DR. MICHAEL NELSON: Well, thanks for shifting
- 2 gears, Dr. Monto, to a very difficult but, perhaps,
- 3 easier question with regards to the role of VRBPAC and
- 4 FDA. And thank you, Dr. Weir, for providing such a
- 5 structured approach. Albeit, challenging with respect
- 6 to the wide open questions that are available. And I
- 7 will put my foot forward proposing that we do have a
- 8 unify approach to vaccination and strain content for the
- 9 vaccines offered here in the U.S., pending any
- 10 additional data and discussion from the rest of the
- 11 committee.
- I think it will be important, seeing the
- 13 confusion that's already occurred with the launch of
- 14 vaccines that have been approved and put out for
- 15 emergency use authorization by the public, to have
- 16 different constructs of vaccines available in the U.S.,
- 17 while adding increased complexities,
- I also do want to revisit the challenges of
- 19 timelines and the sincere worry that you, Dr. Monto, and
- 20 I believe other members of the committee have. And,
- 21 perhaps, challenge the notion, when you talk about the

- 1 role of FDA and this VRBPAC committee, in how we
- 2 approach a change in vaccine construct.
- And the reason I bring that up is I reviewed
- 4 the timeline of the Omicron wave that we just
- 5 experienced. Even if we had a perfect kaleidoscope,
- 6 November 26 was the identification of the variant of
- 7 concern. December 1st, or early in December, the first
- 8 U.S. case was reported. That represents less than five
- 9 months since designation of the VOC, and approximately
- 10 three months after the first U.S. case, when we didn't
- 11 even know whether that particular variant was going to
- 12 hit the U.S. So to make a decision on a change in
- 13 vaccination and to launch it in time to prevent that
- 14 disease would not have occurred with the Omicron variant
- 15 specifically.
- So had we pivoted all our vaccines to that
- 17 particular variant, we would be at risk of not only
- 18 missing the wave, but, perhaps, being so antigenically
- 19 distinct from others that will come, we may have missed
- 20 the boat in providing baseline and advancement in immune
- 21 protection for those variants that are to come.

- 1 So I would propose that we address or adopt a
- 2 framework that is more intentional. That really looks
- 3 at making changes only when we feel that it's competent
- 4 and it's going to substantially lead to a longer
- 5 duration of baseline immunity. There's no quarantee
- 6 that every emergent variant is going to be the bases for
- 7 the next variant, unless it's globally present.
- 8 So, I think that we need to use our predictive
- 9 models and, perhaps, pivot to a multivalent approach
- 10 that includes some baseline immunity from historically
- 11 evidence-based strain, providing broad immunity against
- 12 multiple variants. And then intentionally and
- 13 cautiously fold in additional variants that may provide
- 14 a longer range approach to sustain immunity both on the
- 15 humoral and cellular side. Be interested in your
- 16 comments, Dr. Weir.
- DR. ARNOLD MONTO: Thank you for that very
- 18 specific proposal, which gives us a bit of a framework
- 19 to continue our discussion. Dr. Sawyer.
- DR. MARK SAWYER: I would like to step off Dr.
- 21 Nelson's comments and make a few others from sort of the

- 1 public health implementation standpoint. I think,
- 2 clearly, whatever we do -- lacking clear correlates of
- 3 protection information -- would make this simple as we
- 4 need to continue to focus on the worst case, which is
- 5 severe disease. And, we need to change strains when
- 6 we're losing that battle, to be defined by future
- 7 discussions.
- 8 I think the current situation where we're
- 9 feeling compelled to boost every four months,
- 10 potentially, is not sustainable. So to the point of
- 11 composition of vaccine in the future it seems to me,
- 12 from what we've heard today, that a multivalent vaccine
- 13 is going to be important to hopefully prolong the
- 14 duration of protection against the foreseeable variants
- 15 that will emerge.
- But I think overall we have to keep this as
- 17 straightforward as possible, and Dr. Weir's presentation
- 18 and at least one other FDA speaker raised the question
- 19 about whether the composition -- if I understood the
- 20 comment -- that whether the composition of the vaccine
- 21 would be different for a primary vaccination versus

- 1 boosting. Which I didn't really understand, I don't see
- 2 why we would go backward to a previous version of the
- 3 vaccine, even if someone had not previously been
- 4 immunized. So I would like to understand that a little
- 5 bit more as we go forward.
- And the last thing I'll say is we clearly need
- 7 a unified approach to manufacturing. It would be
- 8 impossible to keep track of multiple different vaccines
- 9 with different compositions. So I'm in full support of
- 10 VRBPAC picking the strains and having all manufacturers
- 11 make a vaccine with those strains.
- 12 DR. ARNOLD MONTO: Dr. Marks?
- DR. PETER MARKS: Yeah, thank you. Dr. Sawyer,
- 14 thanks for raising this. I think we internally, I'll
- 15 speak for Dr. Weir and Dr. Fink on this one. We had a
- 16 discussion about this issue that you raise. We agree
- 17 with you; we would not be going backwards. I think if
- 18 you as the VRBPAC decided to recommend a strain change,
- 19 or new variant composition of multivalent vaccine, that
- 20 would have to become what we would use for primary
- 21 series.

- 1 It would be too confusing, and potentially
- 2 dangerous, to have different regiments like this,
- 3 especially when you're trying to vaccinate tens of
- 4 millions of people, to have a different primary
- 5 composition. And I don't think it would make a lot of
- 6 sense either. So, we would assume that much like with
- 7 flu, once we move to a new composition for whatever we
- 8 call it -- we can call it a booster. We can call it
- 9 Joe. But whenever we do Joe, it will also change the
- 10 composition of the primary series.
- 11 DR. ARNOLD MONTO: But not necessarily the
- 12 number of doses.
- DR. PETER MARKS: The number of doses, I think,
- 14 that's been established, I think, as part of what we
- 15 established -- we would keep the number of doses.
- 16 Unless the manufacturers bring us some new data, the
- 17 primary series would remain the number of doses in the
- 18 primary series as a two-dose primary series. And then
- 19 this would then be the additional doses that would be
- 20 used wherever we deployed them. Doran, do you want to
- 21 pick up from here?

- 1 DR. DORAN FINK: Yeah, I just wanted to add
- 2 that this issue of avoiding unnecessary confusion by
- 3 having a unified approach is one that really does impact
- 4 the question of whether to -- if one were to proceed
- 5 with extreme composition change, should it be toward a
- 6 monovalent vaccine that is directed against a variant,
- 7 say Omicron, or should it be a multivalent vaccine. And
- 8 what I think certain people have hinted at, and some
- 9 might have said more explicitly, is that pivoting
- 10 towards a monovalent vaccine directed at something like
- 11 Omicron runs the risk of really narrowing the breadth of
- 12 coverage for people who might be getting that modified
- 13 vaccine as their primary series. That would be a large
- 14 concern.
- And so thinking in practical terms, thinking
- 16 programmatically, it really does seem, at least to me,
- 17 to make a compelling case for any modified vaccine
- 18 really ensuring breadth of coverage to optimally be able
- 19 to handle whatever variant might come.
- DR. ARNOLD MONTO: And, trying to move us to
- 21 some kind of consensus, can we have comments from the

- 1 committee about anyone who does not feel that what we
- 2 should be working towards is a multivalent which could
- 3 include a bivalent vaccine, which would be uniform
- 4 across platforms, whatever they may be at the time. Dr.
- 5 Marks?
- 6 DR. PETER MARKS: I just wanted to mention that
- 7 I think there's obviously the idea of a bivalent or
- 8 multivalent. There's also the concept, and I think a
- 9 little bit of this was presented by Dr. Beigel, that
- 10 there may be other monovalent vaccines which may end up
- 11 producing the antigenic diversity that could coverage
- 12 much like a bivalent would. It might not be the current
- 13 prototype, but it might be another. So, I think we
- 14 would do it obviously in a data-driven manner, whether
- 15 it's a bivalent or whether there was some data that
- 16 another monovalent could provide similar type of
- 17 protection. It's just open to what the data show.
- DR. ARNOLD MONTO: Well, let's then discuss
- 19 that this would be something which is data-driven, based
- 20 on clinical evidence of efficacy, which is what my
- 21 problem with something that has not actually circulated

- 1 even though it might be -- whether you're going to have
- 2 data on efficacy by the time we have to make decisions.
- 3 But, if that is possible that would certainly be part of
- 4 the equation. So let's have some discussion about this
- 5 in particular. I'll call on the next hand that I see
- 6 raised, which is Dr. Meissner.
- 7 DR. CODY MEISSNER: Thank you, Dr. Monto. I
- 8 think it certainly makes sense to have a common goal,
- 9 but the question I have is this. When the vaccine
- 10 manufacturers make the influenza vaccine, they are aware
- 11 of a certain market size. And that is pretty
- 12 predictable, and it will be there. So that justifies
- 13 their investment in developing that vaccine.
- But that may not be the case with COVID. That
- 15 is, we probably wouldn't even have had as many vaccines
- 16 had it not been for the support from BARDA, which funded
- 17 Operation Warp Speed. And there probably won't be so
- 18 much federal funding, and maybe that's not correct. Dr.
- 19 Marks, you may be able to correct me there. But, will
- 20 the pharmaceutical companies want to develop a new
- 21 vaccine if there isn't assurance that that will become

- 1 an authorized and then recommended vaccine by the CDC?
- 2 I mean, it would be a gamble for them.
- 3 DR. ARNOLD MONTO: Dr. Marks, would you comment
- 4 on whether we should be concerned with the marketplace
- 5 issues, or should we go on the theory that this is going
- 6 to be taken care of?
- 7 DR. PETER MARKS: Great question here. I think
- 8 that we probably need to be thinking here about the
- 9 public health perspective, and Dr. Cohn could probably
- 10 also chime in from CDC. But, I think what I alluded to
- 11 at the beginning of this idea of waning immunity,
- 12 combined with the fact that, remember, as presented by
- 13 CDC, only half of Americans have actually received a
- 14 third dose of vaccine. So they probably do not have
- 15 optimal immunity, and they will not have optimal
- 16 immunity going into a fall/winter season. We will
- 17 probably have the increased drift of whatever we are
- 18 going to see, whether it's an Omicron descendant or some
- 19 other variant that could come kind of out of left field
- 20 -- we've seen that already, so it could happen again,
- 21 not likely but it's there -- and the seasonal

- 1 respiratory virus.
- 2 That combination makes us think that we
- 3 probably have to be prepared at least from a standpoint
- 4 of national security, making sure that we can protect
- 5 our population, to have a vaccine in hand. And I think
- 6 the manufacturers are committed to developing one. And
- 7 I think Congress' funding, not quite withstanding, yet I
- 8 think there's a fair amount of commitment to ensure that
- 9 one is made available if it's felt to be indicated.
- 10 DR. ARNOLD MONTO: Thank you. Dr. Rubin?
- DR. ERIC RUBIN: I wanted to get at the point
- 12 about clinical efficacy testing. It just takes a long
- 13 time, and the way that we've come, and the manufacturing
- 14 process, it was already heard about, is going to take
- 15 just far too long. We hope that in some of the current
- 16 trials going on with multivalent vaccines that we see
- 17 broad protection. And we hope that that happens. But
- 18 right now I think that we are going to have to rely on
- 19 immunobridging and remembering that immunobridging is
- 20 not great right now. What's even worst is that it's not
- 21 as good for protection of severe disease, which our

- 1 primary goal with the current vaccines is.
- So, I don't think there's any way around the
- 3 fact that if we're going to do this in a timely fashion,
- 4 we're going to have to use safety and immunogenicity as
- 5 our endpoints, and not have the clinical data that we'd
- 6 all love to have. I don't think it's going to be
- 7 practical.
- 8 DR. ARNOLD MONTO: This is why I raised the
- 9 question about a new variant and getting clinical data,
- 10 because it's not going to be possible to do that
- 11 especially if we don't have transmission of that
- 12 variant. Dr. Levy.
- 13 DR. OFER LEVY: Thank you. I think we're
- 14 looking at a conundrum here, and people are putting
- 15 their finger on it that it's going to be hard to
- 16 generate all the data we want in short order when a new
- 17 variant emerges. And, so, as Dr. Rubin said, the
- 18 practical path is to go with safety and immunogenicity.
- 19 But this leads us to the conversation about correlates
- 20 of protection. And, yes, if the question is are
- 21 sophisticated efforts ongoing around the world to

- 1 understand the correlates of protection? The answer, of
- 2 course, is yes.
- But the question to FDA is, what is the
- 4 interoperability of this correlates of protection data?
- 5 Are people using standard operating procedures? Is
- 6 there data harmonization? Are people looking not just
- 7 at the level of antibody but the types of antibodies
- 8 functionally that are made? That's called system
- 9 serology. Is there a public repository being developed
- 10 by FDA or federal officials to put in the identified
- 11 quality assured COP, correlate of protection data, so
- 12 that there can be a meta-analysis of it?
- We need to also keep our options open. MRNA
- 14 vaccines are great. They can be turned around quickly.
- 15 But it may be that other platforms emerge that give
- 16 broader protection. So I would say as we move forward,
- 17 we don't want to bake in a system that excludes other
- 18 types of vaccines. Adjuvanted subunit vaccines, pan-
- 19 coronavirus vaccines, for example, the nucleoprotein of
- 20 the coronavirus might induce T cell responses that can
- 21 mitigate severity of disease.

- 1 And we mentioned the global view, yes, the
- 2 virus can be regional and our first priority is the
- 3 United State. But, of course, our decisions will impact
- 4 what's available for the rest of the world, and if they
- 5 don't have the vaccines they need those variants that
- 6 emerge there will come back here. The cycle time for
- 7 new variants can be every three to six months. And what
- 8 would the vaccine uptake be? Who would be willing to
- 9 take vaccines that frequently? That's a question. So
- 10 is this something that is just targeted to vulnerable
- 11 populations potentially? And if we have a vaccine
- 12 emerge that prevents infection, and reduces
- 13 transmission, that'll change the decision process.
- 14 Which population is driving the spread of the infection?
- 15 Finally, if the vaccine efficacy is mostly
- 16 against severe disease and mortality, it seems we
- 17 prioritized older adults, those with chronic diseases,
- 18 and immunocompromised. So, those are my thoughts.
- 19 Thank you.
- DR. ARNOLD MONTO: And just to add, for all the
- 21 years we've been working on influenza, HAI antibody is

- 1 not really a correlate of protection. And it was real
- 2 poorly (audio skip).
- 3 DR. OFER LEVY: Exactly. We're at risk of
- 4 doubling down on a failed strategy. We've got to get
- 5 into the immunology. Yes, there are great labs out
- 6 there doing amazing work, but where is the federal
- 7 effort to coordinate all of that to develop a public
- 8 repository around the correlate of protection, and to
- 9 make sure we have the best available data for the
- 10 immunogenicity when we make those decisions?
- 11 DR. ARNOLD MONTO: Dr. Sawyer.
- DR. MARK SAWYER: It's not probably in the
- 13 purview of VRBPAC, but I just want to point out that as
- 14 new vaccine products start to be rolled out presumably
- 15 their availability will be incremental. And so we are
- 16 again going to have to face prioritization of who should
- 17 get the vaccines first, and work through that at the
- 18 initial release. So I'll just put that out on the table
- 19 for us to remember.
- DR. ARNOLD MONTO: Dr. Berger.
- 21 DR. ADAM BERGER: I think I agree with much of

- 1 what's been said. But I wanted to push on one concept.
- 2 What we've been talking about is sort of putting this
- 3 into the framework of how we deal with influenza. And
- 4 our trying to predict what the next circulating virus
- 5 is going to be. And make sure that we have a vaccine
- 6 that is targeted specifically to that. And I think
- 7 what we've seen, yeah, we've gone through Alpha, Beta,
- 8 Delta, Omicron, and this has been a couple of years now,
- 9 without seeing a concomitant decrease in efficacy
- 10 against severe disease.
- 11 And so, we heard earlier that the mutation rate
- 12 is something like five times the rate of flu at the
- 13 moment. And, it's unclear how often we'll get that
- 14 Omicron like variant that pops up. And so, I think we
- 15 have a lot of unknowns at the moment to be making
- 16 determinations about needing, for instance, to go ahead
- 17 and make a specific vaccine that is directed at every
- 18 potential variant that arises. Considering you're
- 19 getting 12 mutations per year at this point. I'm going
- 20 to put out something where I'm just going to put it out
- 21 as a question to the committee.

- 1 Do we actually need to do this in advance, or
- 2 is this something that you could be evaluating after the
- 3 fact, and start developing the clinical data to support
- 4 a change once we know that there are actually
- 5 significant effects on something like severe disease or
- 6 severe outcomes, as opposed to being preparatory for
- 7 every potential variation that might arise in a given
- 8 year?
- 9 It really is a question, but it's just because
- 10 we're really thinking, or at least I'm hearing a lot of
- 11 thinking, that it's tied to the way that we deal with
- 12 flu. And I'm sorry, I can't remember who mentioned it
- 13 earlier but we may not be dealing with the same type of
- 14 ideology that we're dealing with flu when we're talking
- 15 about COVID. So, I'd like to just give that idea like
- 16 maybe we could actually do this after the fact and make
- 17 correlative changes based on actual knowledge of impacts
- 18 on clinical outcomes.
- 19 DR. ARNOLD MONTO: Dr. Mark, how are we doing
- 20 in terms of helping you with our discussion? And how
- 21 can we do better?

- DR. PETER MARKS: Now, I actually think you're
- 2 doing an excellent job. I think that we've heard some
- 3 of the challenges here. And I think actually the open
- 4 public dialog here about some of the challenges here, in
- 5 coming to select something, is exactly what I think is
- 6 important to have. We're going to have to think about
- 7 this in a way that is less than optimal, because we're
- 8 not going to have all the data that we'd like to have.
- 9 The Immune correlate of protection issue is one
- 10 we very much understand. We've been watching and
- 11 working with our NIH colleagues that have been trying to
- 12 work through this, as well as the companies. There is
- 13 not a clear, perfect, immune correlate of protection,
- 14 and so we're using poor man's immune correlates of
- 15 protection here -- or poor person's immune correlates of
- 16 protection with antibody levels.
- We do know, increasingly, the importance of the
- 18 T cell response. But it hasn't all been integrated yet.
- 19 And so, we are in a place where I think it very much
- 20 take to heart, I think, what we've heard here both in
- 21 terms of wanting to have data, wanting to have a

- 1 strawman proposal, wanting to have a unified
- 2 composition, and then wanting to try to advance the
- 3 correlates of protection as much as we could or can, to
- 4 be able to make better decisions.
- 5 So I think that has done quite well here. I
- 6 think the question of what conditions would indicate the
- 7 need? It seems like we're saying that that would be
- 8 data-driven. And, if I heard correctly here, it's
- 9 basically data-driven and particularly data-driven by
- 10 reduction in protection against severe outcomes, or the
- 11 prediction that we would have reduction protection
- 12 against severe outcomes. But I'd be happy to have
- 13 people comment more on that.
- But, in general, I think the committee's input
- is very much appreciated. And I think you've gone
- 16 through a lot of the topics. I'd open it up to Dr. Weir
- 17 and Dr. Fink, if they have other thoughts about
- 18 questions they might like to ask directly.
- 19 DR. ARNOLD MONTO: Yeah, I think that one of
- 20 the messages that's very clear is that severe outcomes
- 21 are what really worry people. And, in fact, the fourth

- 1 dose was really predicated on evidence of beginning
- 2 reduction in severe outcomes and not issues of
- 3 transmissions, because transmission was really
- 4 increasing even with the fourth dose.
- 5 I'd like to make us feel a little more
- 6 comfortable about dealing with COVID and not flu. And
- 7 remind people that with COVID, one variant seems to
- 8 triumph over all. And, we typically are dealing with
- 9 one variant at a time. A couple of years ago we had an
- 10 AH1N1 virus with maybe four different variants
- 11 circulating in the United States, and with efficacy
- 12 being different for each. So, at least, we got that to
- 13 work with with this virus, which does seem to mutate in
- 14 a different way. Dr. Weir?
- DR. JERRY WEIR: So, a couple of things. One,
- 16 I also think the committee has given us a lot of nice
- 17 thoughts and good ideas. Two questions for the
- 18 committee to think about. One is, what do the members
- 19 think about this idea that -- right now we have
- 20 sponsors/manufacturers coming to us with proposal for
- 21 how to evaluate composition, strains, things like that.

- 1 What about this idea of trying to better coordinate
- 2 that? Not get the proposals directly from the
- 3 manufacturers, but somehow coordinate the studies that
- 4 need to be done to inform strain selection. Whether
- 5 that NIH, CDC, I don't know who, but somehow coordinate
- 6 that in advance. Would the committee think that's a
- 7 good idea, and if so, maybe we could kick that around
- 8 about how best to implement it.
- 9 And then my second question was -- and this is
- 10 what I think I heard, but I want to make sure I heard it
- 11 and didn't make it up. Does the committee think that
- 12 getting back together in some reasonable period of time
- 13 to review the available data is a good idea? Available
- 14 data being mostly, not only whatever the epidemiology is
- in another month or two or three, but also the results
- 16 of whatever clinical trials we do have with variant
- 17 vaccines and different composition. So a couple of
- 18 those things are what I'd like to hear a little bit more
- 19 about.
- DR. ARNOLD MONTO: Well, let me respond and
- 21 then we'll open things up for the committee to respond

- 1 on their own. I think we've heard a strong feeling that
- 2 we need more information on clinical trials that are
- 3 ongoing. That this was one of the things we heard
- 4 allusions to, but not a specific description of them, of
- 5 multivalent trials, trials with some of the variants
- 6 that have not taken off, which might be more central in
- 7 terms of providing broader protection. So, that's one
- 8 thing I've heard from the members.
- 9 The other thing which I think, again I'm going
- 10 to ask the members to comment on is that, yes, we do
- 11 need more attention to some of the various issues which
- 12 are interagency, but the usual problem with those issues
- is a way to make them work. And I don't know that this
- 14 committee is in the position of discussing interagency
- 15 attention to some of these very broad issues which may
- 16 be more in the hands of NIH or CDC or BARDA.
- So let's have some discussion about those
- 18 issues. I see Dr. Marasco got his hand raised. Dr.
- 19 Marasco.
- DR. WAYNE MARASCO: I'll make it brief, but I
- 21 think, you know, we've been able to boost ourselves to

- 1 protection here with the ancestral Wuhan strain. So,
- 2 it's not like that vaccine has not worked. And, vaccine
- 3 effectiveness and efficiency, I think, is really what
- 4 we're looking for, in hospitalization and severe
- 5 illness.
- 6 But even if we give another booster vaccine,
- 7 the vaccine is going to wane. So, we're going to be
- 8 looking at waning immunity matter if we get another
- 9 bivalent vaccine, or another vaccine. And I think we
- 10 have to take into account the timing after vaccination
- 11 when we look at these VE data.
- Regarding interagency communication, there's a
- 13 lot of ongoing studies that I think are really not under
- 14 the purview of either our committee or the FDA that
- 15 could bare a lot of insight into correlates of
- 16 protection and things that we should be looking at that
- 17 we don't have available to us right now. So I think
- 18 that's something that the FDA and our committee could
- 19 sort of put together to make these meetings more
- 20 informative for that particular set of data which we're
- 21 lacking.

- 1 DR. ARNOLD MONTO: Thank you. Dr. Offit.
- DR. PAUL OFFIT: Right, I actually agree with
- 3 you, Arnold. I think that the first step is identifying
- 4 that there has been a variant that has arisen that has
- 5 mutated those epitopes that are -- what have to date
- 6 been fairly conserved epitopes that have been recognized
- 7 by memory cells that has mutated away from that to the
- 8 point that we're no longer protected against serious
- 9 illness, however we define that.
- 10 And that has to come, I think, through the CDC,
- 11 perhaps in collaboration with World Health Organization
- 12 and other international bodies to see when that arises.
- 13 And then what has to happen from that point on is a
- 14 coordinated effort between FDA, NIH, et cetera, to help
- 15 -- and the companies, on how to best move forward. I
- 16 feel like at some level the companies kind of dictate
- 17 the conversation. You often hear that the company now
- 18 has an Omicron specific vaccine, or a vaccine that can
- 19 now link with the influenza vaccine. And it shouldn't
- 20 come from them. It really has to come from us.
- 21 The second thing is that, again, not to harp on

- 1 this boost thing. I know Peter said we could use the
- 2 word "Joe," but I prefer to not use either. I think
- 3 that typically you're not very good at boosting memory.
- 4 I mean, if you look at John Wherry's data, what he finds
- 5 is that after the first two doses given close together
- 6 you get a high memory response, which is fairly long
- 7 lived. But with that third dose you don't get a huge
- 8 boost in memory. And, so, therefore, if you're going to
- 9 have a variant that is so different from the current
- 10 strains where you're not protected against impurities,
- 11 that's another vaccine. That's a new vaccine.
- 12 And, therefore, we're going to have to think
- 13 about how we're then giving this primary series again --
- 14 is it a two-dose series, is it a three-dose series. It
- 15 could be a two-dose series 12 weeks apart instead of two
- 16 doses close together. So, those are the things I think
- 17 we're going to need to think about. Thanks for giving
- 18 me time.
- 19 DR. ARNOLD MONTO: I surprisingly do not see
- 20 any hands raised at the moment. I think I can speak for
- 21 the committee because they are willing to appear and

- 1 spend a whole day listening to this material that we
- 2 will meet as needed. And certainly it looks like it's
- 3 something that will need follow up when we have more
- 4 data available. I see, Dr. Cohn?
- 5 CAPT. AMANDA COHN: Thanks, Dr. Monto. So, I
- 6 just want to comment on a couple of the things that has
- 7 been said throughout this period. The first is I
- 8 absolutely agree that it would be incredibly helpful,
- 9 what Dr. Weir said, for the companies or for FDA to at
- 10 least bring to the committee some of the different
- 11 approaches the companies are thinking about taking or
- 12 allowing us to comment on specific concepts so that we
- 13 can better inform the direction moving forward.
- I also just want to talk a little bit about
- 15 this whole issue of severe disease, vaccine
- 16 effectiveness, and waning immunity and durability. So,
- 17 we have a great vaccine effectiveness platform in the
- 18 United States. We're doing multiple different studies,
- 19 as Dr. Ruth Link-Gelles described earlier. But we're
- 20 never going to get the kind of specificity that I think
- 21 everybody would like to see. And I just want to caution

- 1 people, these studies will show different numbers, it's
- 2 different groups of people that are being studied,
- 3 different circumstances, different outcomes. And, it is
- 4 the totality of the evidence that I think helps inform
- 5 our decision making.
- But I think that when we start to see small
- 7 declines, like for example 90 percent protection against
- 8 hospitalization versus 88, I would caution people from
- 9 jumping to big conclusions about that data. And, I do
- 10 think we still have to recognize that there are
- 11 confidence intervals around all of these individual
- 12 studies. And when we jump to conclusions too quickly,
- 13 we can find ourselves potentially jumping the gun a
- 14 little bit.
- And so, when we use the U.S. data, which I do
- 16 think it's important to use U.S. data, I think that data
- 17 from other countries can be really helpful and
- 18 informative. But we can't just look at relative
- 19 effectiveness, we need to look at the effectiveness of
- 20 three doses compared to not getting vaccinated or two
- 21 doses. And the effectiveness of four doses compared to

- 1 not getting vaccinated or two doses.
- I think that when we talk to the public about
- 3 relative effectiveness, it can misstate the overall
- 4 protection that the primary series and booster dose, the
- 5 three-dose series, does provide. And, we still have
- 6 such a problem in this county with such a limited number
- 7 of people having gotten their third dose that I feel
- 8 like when we start talking about the importance of
- 9 future doses we're forgetting that we need to get the
- 10 country that third dose. And so we have really good
- 11 data to tell us that vaccine effectiveness is improved
- 12 against serious disease with that third booster dose.
- 13 But, we also are seeing that that third dose is holding
- 14 very steady.
- And so, I would hate for us to use signal of
- 16 potential reduction in VE to jump ahead and switch
- 17 vaccine or to add another booster. So while I think
- 18 there's this balance of needing to be prepared and
- 19 continuing to work on getting a multivalent product that
- 20 could be used-ready. I think that it would be helpful
- 21 for the committee to describe or talk about some

- 1 specific conditions that would support the need for an
- 2 updated booster dose.
- For example, is the expectation that vaccine
- 4 effectiveness is going to stay above 90 percent against
- 5 hospitalization and death, or is it 80 percent? And,
- 6 what is our threshold for wanting a booster. And then,
- 7 from a durability prospective, if that booster only
- 8 provides protection for eight weeks, as some of the data
- 9 from Israel is showing, is that an effective use of
- 10 additional intervention strategies.
- 11 And so, I think, we can talk a very long time
- 12 about the complexity alone of the vaccine effectiveness
- 13 data, but I think that it does need to be understood
- 14 further by the committee, and honestly by the public, to
- 15 help inform needs for future doses. Thanks.
- DR. ARNOLD MONTO: Thank you, Dr. Cohn. What
- 17 is the alternative if you find that a booster dose
- 18 boosts only for eight weeks?
- 19 CAPT. AMANDA COHN: That's what the committee
- 20 needs to discuss. I think it would be helpful, from my
- 21 perspective, to hear from other committee members what

- 1 our expectation of the program is. This goes back to, I
- 2 think, what Dr. Nelson was saying at the very beginning.
- 3 What is the --
- 4 DR. ARNOLD MONTO: What would your expectation
- 5 be? If we're in a situation where we need boost every
- 6 eight weeks in order to keep protection up and that's
- 7 not feasible from a public health standpoint.
- 8 CAPT AMANDA COHN: I do not believe that
- 9 boosters every --
- DR. ARNOLD MONTO: What's your thought?
- 11 CAPT AMANDA COHN: Yes, so I do not believe
- 12 that boosters every eight weeks or even four months is a
- 13 long-term strategy for prevention. But I think that
- 14 given that our effectiveness against hospitalization in
- 15 an immunocompetent individual is over 80 percent, and
- 16 that's in older adult, and in persons with chronic
- 17 medical conditions, I think we may have to accept that
- 18 level of protection, and then use other alternatives
- 19 ways to protect individuals with therapeutics and other
- 20 measures.
- DR. ARNOLD MONTO: So, would that be your

TranscriptionEtc.

- 1 proposal then? I'm trying to get some concrete
- 2 guidance. Would 80 percent be the level we would be
- 3 shooting for?
- 4 CAPT AMANDA COHN: I think that we just need to
- 5 have transparent conversations about levels that we're
- 6 talking about. I said 85 to 90 percent. The vaccine
- 7 appears to be about 90 percent, 88 percent effective
- 8 against hospitalization. As I said, those numbers are
- 9 not specific so I do think that that doesn't --
- 10 DR. ARNOLD MONTO: They (inaudible).
- 11 CAPT AMANDA COHN: Right. So, I think it would
- 12 be helpful conversation, though, to hear from the other
- 13 committee members where people's thresholds are.
- 14 Because I think that it varies probably.
- DR. ARNOLD MONTO: Dr. Marks?
- DR. PETER MARKS: One of the things that we
- 17 shouldn't forget about is that, yes, I think we're very
- 18 much on board with the idea that we simply can't be
- 19 boosting people as frequently as we are. And I'm the
- 20 first to acknowledge that this additional fourth booster
- 21 dose that was authorized was a stop-gap measure until we

- 1 got things in place for a potential next booster, given
- 2 the emerging data. And it was done because of the
- 3 amount of harm that has come to our older population in
- 4 the United States, with one in 100 individuals over the
- 5 age of 65 having died in the past two years of COVID-19.
- 6 So we need to protect that population.
- 7 That said, moving forward, we will have this
- 8 issue that coming into the fall season only half of the
- 9 population overall, and granted it's two-third of the
- 10 population over age 65 are vaccinated with a third dose,
- 11 but half of the population overall has received a third
- 12 dose and that means that they will not have the more
- 13 durable protection. And the question is -- for those
- 14 people even that's a lot of vaccines -- do you modify
- 15 your vaccine composition so that when you do boost those
- 16 people you give them the best chance at having a longer
- 17 lasting protection given that we have seen the pandemic
- 18 evolve.
- I am completely of the mind that we have to do
- 20 tremendous work in researching more advance vaccines,
- 21 mucosal vaccines, pan-coronavirus virus vaccines, but

- 1 we're not going to get there for this coming year. And
- 2 so this is really trying to do the best we can with the
- 3 knowledge we have at hand, which is something that we've
- 4 had to do a fair amount of over the past two years as a
- 5 public health agency.
- 6 DR. ARNOLD MONTO: In calling on Dr. Levy, let
- 7 me apologize for not calling on some people who are way
- 8 down on my list. My system doesn't seem to be doing
- 9 what it's supposed to be doing and bringing up those who
- 10 have their hands raised. And above those that have
- 11 their hands raised I have FDA Studio Cloud, and
- 12 something else.
- 13 MR. MICHAEL KAWCZYNSKI: Why don't you take the
- 14 person who hasn't spoken recently?
- 15 DR. ARNOLD MONTO: Dr. Kim.
- 16 DR. DAVID KIM: Thanks very much. Mike, I
- 17 appreciate that interjection. I'd like to mention a
- 18 couple of things. A lot of these discussion points have
- 19 been touched on a number of times. And, I want to start
- 20 out with Dr. Gans' comments earlier. She mentioned
- 21 several things, us needing to understand the evolving

- 1 science, obviously. And this has been mentioned by
- 2 multiple people, us also needing to better understand
- 3 correlates of protection as well as understanding what's
- 4 in the pipeline for new technology.
- 5 And those thoughts have been echoed by others,
- 6 including Dr. Levy, and I think those are perfectly
- 7 relevant and important questions. And this VRBPAC
- 8 meeting, the slide we have here, Topics for VRBPAC
- 9 Discussion. A lot of questions have been posed to us as
- 10 VRBPAC members, but I think many of our discussion
- 11 points have basically come around and we're asking FDA
- 12 questions for discussion. So questions are begetting
- 13 additional questions.
- And I'm not sure if, given the topic and given
- 15 the evolving process of this entire COVID-19 response
- 16 including vaccination and therapeutic and others,
- 17 whatever decision we make is appropriate, perhaps, for
- 18 now. But it may not be appropriate three, six months
- 19 down the line. So, I just wonder about the value of
- 20 specifically answering, like what Dr. Cohn has tried to
- 21 do, for what's on the table presently.

- So I might propose that following Dr. Meissner
- 2 and Dr. Sawyer's leads that we might step back and look
- 3 at things a little more comprehensively, at a little
- 4 higher elevation, if you will. And, the first issue has
- 5 to do with the vaccine itself, vaccine and vaccinology.
- 6 And the second issue is vaccination, meaning vaccine
- 7 supply, manufacturing, and distribution concerns. And
- 8 the third thing is basically an evaluation of the
- 9 process that CDC is well positioned to do.
- 10 So, I'd like to address the first two items
- 11 here. And, I'm doing that just in the context of VRBPAC
- 12 mechanism. Presently, we meet on an ad hoc basis when
- 13 the meeting's called every several months or more
- 14 quickly if a vaccine is in the pipeline for approval --
- 15 or application for EUA or a BLA. But these issues, the
- 16 issues that we see on the slide here, they're ongoing.
- 17 So, I might propose that -- and I'll prefix it by saying
- 18 there are different federal advisory committees that
- 19 operate differently. VRBPAC has its own mechanisms.
- 20 ACIP has another. And there are various non-
- 21 immunization advisory committees that have their own

- 1 systems in place. And, for VRBPAC it seems that we
- 2 simply call for a meeting when there are issues such as
- 3 what we're doing today, or when there's an application
- 4 that needs to be reviewed.
- 5 I'm going to propose that we stand up
- 6 subcommittees so that we have an ongoing dialog, ongoing
- 7 exchange of information with people and organizations
- 8 that have data so that we have a process in place to
- 9 consider these different questions. And, of course,
- 10 over time that's going to -- the nature of the
- 11 conversation will evolve. But I'm going to suggest that
- 12 we stand up two subcommittees.
- 13 A first committee is vaccine composition, for
- 14 obvious reasons. I think it includes the majority of
- 15 the bullets identified on this slide. So we're talking
- 16 about COVID epidemiology in the United States as well as
- 17 globally. We're talking about vaccine strain
- 18 composition and selection. And also, I think, this was
- 19 brought up earlier, a contingency plan against poor
- 20 vaccine effectiveness, be considered by the
- 21 subcommittee.

- 1 And the second subcommittee that I might
- 2 propose is vaccine supply and distribution, for obvious
- 3 reasons, to review the current vaccine platforms,
- 4 manufacturing capacity, et cetera, et cetera. That way
- 5 we have an ongoing review, ongoing dialog, exchange of
- 6 information so that we're better prepared to address
- 7 these concerns over time. Because, right now, the
- 8 situation is evolving and we should evolve with it. And
- 9 I don't think we can optimally do that on ad hoc bases.
- 10 And if I may mention one other thing about
- 11 semantics of the boost, booster shots, primary series,
- 12 third dose, et cetera. I think the notion that it's
- 13 just semantics is probably not going to serve us well.
- 14 That it's important in the context of public affairs,
- 15 public interface and clarity and communications. And I
- 16 do wish that VRBPAC, as well as FDA, CDC, and others as
- 17 they have been doing, pay much closer attention to
- 18 semantics. Because I do think semantics are very
- 19 important in how we present the information to the
- 20 public. Back to you Dr. Monto.
- 21 DR. ARNOLD MONTO: Thank you. You've raised

- 1 some very interesting suggestions. I thought about some
- 2 of them and they are very different from the way VRBPAC
- 3 typically works with subcommittees. Dr. Marks.
- 4 DR. PETER MARKS: I think the best thing here
- 5 for Dr. Kim's suggestion, because some of this is not
- 6 even chartered for this committee, would be to take this
- 7 back and have a discussion at a later time on this. We
- 8 can even bring it back to the committee at a further
- 9 time once we understand legally what we can do on this
- 10 committee as well. Thank you.
- 11 DR. ARNOLD MONTO: I think we're in unchartered
- 12 territory because with SARS-CoV-2 a lot of things have
- 13 happened that have never happened before. Dr. Fuller, I
- 14 apologize for missing you until now, please.
- DR. OVETA FULLER: Thank you. So, let me first
- 16 of all agree with Dr. Monto that we're in unchartered
- 17 territory. And, secondly, I want to commend the FDA for
- 18 pulling us together today. And the reason is this, as
- 19 my colleagues have said, is a very complex situation. I
- 20 don't think the public really understand how complex it
- 21 is, and I don't even think we have understood until a

- 1 number of things came up today. I kept my hand up for a
- 2 while, so let me try to walk through these really
- 3 quickly.
- 4 DR. ARNOLD MONTO: I know you have.
- 5 DR. OVETA FULLER: To Dr. Weir's question about
- 6 coordinating effort, and I think some of my colleagues
- 7 have addressed that. Yes, please coordinate so that
- 8 what happens is not being determined by companies coming
- 9 to us. But that someone, whether it's FDA, NIH, CDC,
- 10 WHO, whomever, would be helping to put out what's needed
- 11 so the companies can help address that.
- 12 Secondly, should we convene more often? Yes.
- 13 That's been addressed, because as Dr. Kim just brought
- 14 forth these are complex questions. And we will need to
- 15 know what's happening. And then third, as Dr. Monto
- 16 just mentioned, and many of the people that came on the
- 17 open forum, there are so many things that are changing
- 18 and things we don't know. Example, the viruses are
- 19 changing. We don't know what will happen. We have
- 20 models that help us predict and we have surveillance
- 21 that helps us look at what is happening. We have waning

- 1 immunity; we don't know what will happen with the
- 2 strains that come up. But we do know that the current
- 3 vaccines do protect well, as long as there's a
- 4 reasonable time of boost, against hospitalization and
- 5 death. And that's really, really important. So, we're
- 6 going to have to learn as we go.
- 7 We also don't know the systemic effects of
- 8 COVID. We still have long COVID. And clearly we still
- 9 have rare but very real vaccine effects. And let me say
- 10 to that, that's not only for COVID but we've seen those
- 11 with other vaccines. There are people who have adverse,
- 12 rare adverse, but serious effects to many vaccines
- 13 including influenza.
- So, because we're having so many more vaccines
- 15 to COVID, we're seeing many more severe reactions that
- 16 may be not only due to the vaccine but some other
- 17 things. But those can't be run by, because they affect
- 18 people's perception of what happening. So, we need
- 19 continued research on that.
- 20 And then finally I want to ask a question of
- 21 the FDA. We are here with COVID, two years into this.

- 1 We've used influenza as a somewhat model, not a perfect
- 2 one, but let me remind us that we didn't get to
- 3 understand influenza in two years. It's taken years to
- 4 get to a uniform, somewhat still imperfect, but also
- 5 useful process for what we do with flu.
- 6 So, the question is how much time has it taken
- 7 to get to, and what has been the process for perhaps
- 8 even less complex viruses, like getting to a vaccine and
- 9 a program for HPD, or for influenza or for other
- 10 vaccines? We need to remind ourselves to step back to
- 11 say we are very new in this pandemic. And we don't have
- 12 the answers. VRBPAC doesn't have the answers. FDA
- 13 doesn't have the answer. The important thing here is
- 14 that the public understands how complex this is, and
- 15 that everyone is trying to be transparent and to do the
- 16 best we know that we can learn in the time we have. So
- 17 I'd like to put that to Dr. Marks, please.
- DR. ARNOLD MONTO: Thank you Dr. Fuller. And,
- 19 a couple of years ago we observed a six --
- DR. OVETA FULLER: That's a question for Dr.
- 21 Marks.

- 1 DR. ARNOLD MONTO: -- a sixty-fifth anniversary
- 2 of the flu program. So, there's a lot of difference.
- 3 Dr. Marks do you have responses?
- 4 DR. PETER MARKS: Dr. Fuller, what order would
- 5 you like me to try to -- what questions do you like me
- 6 to try to respond to here?
- 7 DR. OVETA FULLER: Well, first of all, let me
- 8 say thank you for convening the panel now, so we can all
- 9 -- not only the panel members -- but the general public
- 10 can really get an idea of what FDA is dealing with.
- 11 This is so not simple. So, I guess, what do you think
- 12 is the highest priority? We know that a winter serge
- 13 may come and there needs to be some plan for the winter.
- 14 Is that your highest priority at the moment?
- 15 DR. PETER MARKS: Thanks for that question.
- 16 First of all, let me thank you for what you said
- 17 actually about trying to have this VRBPAC. I really
- 18 appreciate your bringing that forward because that is
- 19 exactly one of the reasons why we decided to have this
- 20 meeting. Because we do think that it's important for
- 21 the public to understand the complexity here and the

- 1 lack of absolute certainty. So really appreciate that.
- In terms of what really keeps me up at night,
- 3 it's the knowledge that we can't keep boosting. And
- 4 that we're going to have vaccine exhaustion -- and I'm
- 5 not talking about immune exhaustion. I'm talking about
- 6 physical exhaustion of people not going to get boosted.
- 7 So, if we have another chance for this coming winter, I
- 8 think the idea here, at least one of the issues that we
- 9 were, I think, some of the data seem to point to is that
- 10 there is some concern that as we come into the November
- 11 timeframe, that may be the time -- the October, November
- 12 timeframe -- may be the time to try to boost again if
- 13 the committee is in agreement when we talk about it
- 14 more, in order to protect against a wave that could come
- 15 at the highest time that we are at risk for kind of
- 16 respiratory viruses going inside again.
- 17 I think from what we can see also from
- 18 modelling exercises that have been done of waning of
- 19 protection against severe disease, particularly for
- 20 those who have only received two doses, and perhaps even
- 21 for some who have received three, that would be a time

- 1 when I think we think people might be at greatest risk.
- 2 So this is I think our area of highest concern, but we
- 3 bring this to the committee because we also are
- 4 interested in knowing if it's your highest concern as
- 5 well.
- 6 DR. OVETA FULLER: Yes, thank you.
- 7 DR. ARNOLD MONTO: Thank you.
- 8 DR. OVETA FULLER: I guess my highest concern
- 9 is protecting people for what we know happens. We know
- 10 COVID can lead to death and hospitalizations. And we
- 11 know the current vaccines protect against that. But we
- 12 need people to understand that that's not the end all
- 13 and that's not the magic formula, unless they take that
- 14 and that also there's some risk involved, but the risk
- 15 of the disease, as we've said multiple times, is much
- 16 worse than the risk of the vaccine. This is not a
- 17 perfect system. We've never been here before. We're
- 18 all working together to do the best we can. And it's
- 19 very complex. So I'll just stop there and hope that we
- 20 can convene more often and be kept up to date with what
- 21 is being discovered.

- 1 DR. PETER MARKS: Thank you for that.
- 2 DR. ARNOLD MONTO: Thank you. I just want to
- 3 be sure that everybody I see with a hand raised actually
- 4 wants to speak, because my system has been a little
- 5 erratic. Okay, Dr. Cohn, is this a new raised hand?
- 6 CAPT AMANDA COHN: Sorry, no, that was not a
- 7 newly raised hand, but I do just want to thank Dr.
- 8 Fuller because that was very well said.
- 9 DR. ARNOLD MONTO: Very good. Dr. Levy.
- 10 DR. OFER LEVY: Just a brief point to remind
- 11 folks that just a year or two ago we had nothing. And
- 12 any vaccine that had some safety and even modest
- 13 efficacy would be a godsend. So, right now we have to
- 14 deal with what's in front of us, and the main platform
- 15 in the coming year will be the MRNA vaccines. And thank
- 16 God we have them. But as we move forward, and as Dr.
- 17 Kim said, new structures -- I agree with him 100 percent
- 18 -- will need to be put together to more systematically
- 19 address the needs here including the immunogenicity
- 20 correlates of protection. And give better or more
- 21 specific guidance to the manufacturers of a range of

- 1 vaccines.
- 2 And the word has to get out to the political
- 3 establishment, to the people of the United States, that
- 4 more research is needed to have vaccines that don't
- 5 require so many dosages or that offer broader
- 6 protection. Because I don't think a lot of people have
- 7 gotten that message either. So, there are a lot of
- 8 different types of work to be done here. And, yes, we
- 9 want to keep our eye on what's practical in the coming
- 10 year, but we also want to be ambitious toward the future
- 11 because maybe in a year, year and a half, or two years
- 12 we can have something even better. But we're going to
- 13 get there by working together in a systematic way.
- 14 Thank you.
- DR. ARNOLD MONTO: Dr. Wharton.
- DR. MELINDA WHARTON: I'd really like to thank
- 17 our colleagues at FDA for organizing this discussion.
- 18 These are interesting -- these are really very important
- 19 questions and discussions. And I'm glad that FDA has
- 20 convened VRBPAC to discuss them. I guess what has
- 21 struck me over the course of the day is even though

- 1 we've got a well-established process that works really
- 2 well for influenza, there so much more unpredictability
- 3 and unknowns as was acknowledged in Dr. Weir's
- 4 presentation that it is an imperfect model.
- 5 And, one example of it not fitting exactly
- 6 where we are is the fact that it doesn't sounds like WHO
- 7 is going to be in a position to provide the direction
- 8 that normally they provide two times a year for the
- 9 influenza process. And, yet, in spite of that, given
- 10 the timelines, we anticipate it seem like if something
- 11 is going to be decided or recommended it's going to have
- 12 to happen relatively soon.
- And I did think it's reasonable to be concern
- 14 about the winter given both waning protection and
- 15 potential anticipated changes in circulating viruses, as
- 16 well as the expected winter seasonality for respirator
- 17 viruses. It doesn't seem like it's feasible to create a
- 18 type-specific vaccine in a timeframe that would allow it
- 19 to be used for a rapidly circulating variant like
- 20 Omicron did. So, it does feel to me like the strategy
- 21 that ultimately is going to be most effective for us is

- 1 how to use the vaccine technologies that are currently
- 2 available, to hopefully create broader protection that
- 3 will provide protection against a variety of variants,
- 4 given that we can't really predict what's going to
- 5 circulate.
- 6 But, interesting and important and complex
- 7 questions, and it also make sense to me for FDA to be
- 8 pretty directive to industry about what they would like
- 9 to see soon to really facilitate that decision making.
- 10 Thanks.
- DR. ARNOLD MONTO: Thank you, Dr. Wharton. I'm
- 12 going to close the list which I have now. People who
- 13 have their hands raised, I have Dr. Meissner, Dr.
- 14 Bernstein and Dr. Kim. And so we can ask Dr. Marks
- 15 after that whether he thinks we've got enough opinions
- 16 and recommendations to move forward, so Dr. Meissner.
- DR. CODY MEISSNER: Thank you, Dr. Monto.
- 18 We've got so many topics circulating here. And I have a
- 19 few thoughts about separate issues. And the first,
- 20 before I forget it I wanted to thank Dr. Marks and Dr.
- 21 Fink for the briefing documents that they circulated --

- 1 and it's on the public website -- before the meetings,
- 2 because I found those very helpful and I suspect a lot
- 3 of time has been spent on that.
- 4 Then, the first point I want to make is we
- 5 haven't spoken -- well, I guess, actually Paul raised
- 6 the question about the number of dosages and the
- 7 interval between dosages, and, the concentration of MRNA
- 8 in the different vaccines for different age groups.
- 9 Because the data from the New York Department of Health
- 10 pointed out, I think, that that's really a critical
- 11 issue. The twelve-year-old children that got the 30 mg
- 12 dose had considerably longer protection than the eleven-
- 13 year-old children who got 10 mg dose. So, I realize how
- 14 complicated this is, but I just raised that as another
- 15 issue that needs to be considered going forward.
- Then, in terms of the issue of how will we
- 17 decide when a vaccine needs to be modified. What is
- 18 going to be the threshold of which we say, gee, it's so
- 19 much escape from vaccine immunity that we need to
- 20 change? Such a difficult question to answer, but
- 21 hopefully we're going to be able to convert this into an

- 1 annual vaccine that will be given, perhaps, at the same
- 2 time as a combination vaccine with influenza and maybe
- 3 RSV in time, because I agree there's wariness if we
- 4 continue to recommend frequent boosting.
- 5 And, I think we need to stay away from herd
- 6 immunity as the threshold, and I think everyone agrees
- 7 that that's not going to be a reasonable definition of
- 8 vaccine efficacy. Because until we get vaccines that
- 9 can be applied to mucosal surfaces, we're probably not
- 10 going to get a degree of herd immunity that we want.
- 11 And then the final point I wanted to make is I
- 12 tend to agree with the idea that there's a difference
- 13 between waning immunity and a variant strain that isn't
- 14 susceptible to vaccine induced immunity. And I wonder
- 15 if it might be more helpful for the public to understand
- 16 this difference. Because those are different reasons
- 17 that we would want to vaccinate people. Thank you.
- 18 DR. ARNOLD MONTO: Thank you. Yeah, the
- 19 difficulty is to separate out the waning from the strain
- 20 specific differences.
- DR. CODY MEISSNER: I understand.

- 1 DR. ARNOLD MONTO: Dr. Bernstein.
- DR. HENRY BERNSTEIN: Thank you, Dr. Monto.
- 3 This has been a wonderful conversation. And lots of
- 4 details still to be fleshed out. And we don't have a
- 5 lot of time to do so, but it was a wonderful
- 6 conversation. I do think that we still need to get more
- 7 people vaccinated. And it seems quite obvious that
- 8 those who were vaccinated do better than those that are
- 9 unvaccinated when we look at all of the outcomes.
- 10 And I think it's imperative of us to clearly
- 11 communicate to the public what we're thinking and what
- 12 our overall aim is. And I would suggest that our
- 13 overall aim is to prevent severe disease,
- 14 hospitalization and death, more than just infection
- 15 prevention. And I think people need to also -- public
- 16 needs to understand that there are multiple individual
- 17 factors that come into play such as the number of
- 18 dosages of vaccine they've already received, could be
- 19 zero, it could be four, their age, their underlying
- 20 medical conditions, their immune competence, and even
- 21 their work responsibilities.

- 1 So I think this was a great conversation and
- 2 more to come. And we need to continue to communicate
- 3 this clearly to the public. Thank you.
- 4 DR. ARNOLD MONTO: Thank you. Dr. Kim.
- 5 DR. DAVID KIM: It's been said about two or
- 6 three times something about interagency communication
- 7 regarding immunization or vaccines. And I just want to
- 8 put this information out for the benefit of VRBPAC
- 9 members that the communication between federal agencies
- 10 has taken place always, as long as I've been around
- 11 working on immunizations. That through the Advisory
- 12 Committee on Immunization Practices at CDC, through the
- 13 Advisory Commission on Childhood Vaccines through HRSA
- 14 and the National Vaccine Advisory Committee through the
- 15 HHS. There's a format to which information exchange
- 16 takes place.
- 17 And I might also mention that there is an
- 18 interagency vaccine workgroup that's managed through the
- 19 office of the Assistant Secretary for Health. That
- 20 brings together about 16 different federal operations
- 21 divisions such as CDC, FDA, NIH and so on, plus other

- 1 departments such as Department of Veterans Affairs,
- 2 Department of Defense, et cetera. And, the purpose of
- 3 that particular workgroup is to facilitate communication
- 4 and collaboration amongst its immunization-interested
- 5 members. So there is a forum through which this dialog
- 6 takes place, between federal agencies. And if there are
- 7 issues that VRBPAC members want to bring up to such a
- 8 group, then the forum would be open to any of the
- 9 members including CDC, FDA, NIH and obviously we're
- 10 involved as well.
- 11 It's chaired by the Office of the Assistant
- 12 Secretary for Health. And, so would be happy to take up
- 13 any information exchange that might be needed, either
- 14 for VRBPAC or any other function related to
- 15 immunization.
- DR. ARNOLD MONTO: Thank you very much, Dr.
- 17 Kim. So, Dr. Marks you've heard that we are happy to
- 18 undertake work going forward on this whole very complex
- 19 issue, that we are concerned about the timeline, and are
- 20 cognizant of the need to address the issues as they come
- 21 up, that we would love to have a correlate of protection

- 1 but we don't have it. We realize that clinical trials
- 2 data will be necessary, but we might have to use
- 3 surrogates if that becomes necessary. Our focus is on
- 4 preventing hospitalization and deaths.
- 5 We don't feel comfortable with multiple
- 6 boosters every eight weeks, would love to see an annual
- 7 vaccination similar to influenza, but realize that the
- 8 evolution of the virus will dictate how we respond in
- 9 terms of additional vaccine doses. That we would like
- 10 to see 80 percent protection, but, again, with the
- 11 development of antivirals and other therapeutics we
- 12 realize you can't prevent everything, especially with an
- 13 evolving virus. And the need for revaccination will
- 14 really be dictated by the virus more than by us.
- So, to you, Dr. Marks, have we fulfilled your
- 16 expectations for what we could discuss in this kind of a
- 17 situation?
- DR. PETER MARKS: Yeah, thank you so much. I
- 19 think you have done a great job and I think the
- 20 committee members have all really done a great job
- 21 putting various pieces out there. I think just if I can

- 1 say a couple of final words, I'd appreciate it. Is that
- 2 okay, Dr. Monto? I think we have what we need.
- 3 DR. ARNOLD MONTO: Yes, please.
- 4 DR. PETER MARKS: First of all, I want to
- 5 apologize for the technical difficulties today. I want
- 6 to apologize to the committee members, to you, Dr.
- 7 Monto, I know that we seem to have issues that I am told
- 8 are related to the platform we were using. But we will
- 9 do our absolute best to make sure that these are
- 10 addressed for future meetings, because that creates a
- 11 suboptimal experience both for the committee members but
- 12 also for the viewing public who is trying to hear these
- 13 meeting.
- Next I just want to thank all of the committee
- 15 members and our speakers for their participation today.
- 16 The dialog that has happened over the past about two
- 17 hours has been incredibly helpful to us in terms of how
- 18 we go about thinking about the COVID-19 booster
- 19 strategy. I also want to thank our staff for all of the
- 20 tremendous work that they did in preparing for this
- 21 meeting.

- 1 How we consider boosters for the broader
- 2 population going forward is a very high priority for
- 3 both FDA and our U.S. Government partners. And, the
- 4 agency recognizes the tremendous interest in this topic,
- 5 and it's committed to ensuring that our decision-making
- 6 around boosters continues to be done in a transparent
- 7 manner. And we want people to be able to remain
- 8 confident in the safety and effectiveness of all of the
- 9 COVID-19 vaccines.
- 10 Meetings like the one today really did provide
- 11 us with an opportunity to collect and consider feedback
- 12 from a variety of stakeholders. And in this regard we
- 13 do anticipate holding another meeting on this topic of
- 14 possible boosters for next fall to winter. And that
- 15 meeting we assume will occur by early summer, so not too
- 16 many weeks away. And that will get into a more specific
- 17 level of detail regarding the composition.
- 18 At the end of our process, really our goal here
- 19 is to stay ahead of future variants and outbreaks. And
- 20 ensure that we do our best to reduce the toll of disease
- 21 and death, due to COVID-19, on our population. So I

1	just want to thank everyone again. There's the saying,
2	be careful what you wish for. I suspect that over the
3	next few months there will be a fair number of meetings
4	of this committee, not just for boosters but for other
5	topics that may come up.
6	So, I really want to thank everyone and really
7	enjoy and appreciate all the contributions today. Thank
8	you.

9 DR. ARNOLD MONTO: Thank you, Dr. Marks. And

10 over to you, Prabhakara, for the formal closing of the

11 meeting.

12

13 (PLATFORM AUDIO/VIDEO WAS LOST AT THIS POINT)

14

15 [MEETING ADJOURNED]

