
0

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Coverage

3.3 Vulnerability Information

4 Findings

4.1 Visibility Description

4.2 Vulnerability Summary

5 Audit Result

6 Statement

1

1 Executive Summary

On 2022.06.06, the SlowMist security team received the team's security audit application for OAK, developed the

audit plan according to the agreement of both parties and the characteristics of the project, and finally issued the

security audit report.

The SlowMist security team adopts the strategy of "white box" to conduct a complete security test on the project in

the way closest to the real attack.

The test method information:

Test method Description

Black box
testing

Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project party should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

2

Level Description

Suggestion There are better practices for coding or architecture.

In black box testing and gray box testing, we use methods such as fuzz testing and script testing to test the

robustness of the interface or the stability of the components by feeding random data or constructing data with a

specific structure, and to mine some boundaries Abnormal performance of the system under conditions such as

bugs or abnormal performance. In white box testing, we use methods such as code review, combined with the

relevant experience accumulated by the security team on known blockchain security vulnerabilities, to analyze the

object definition and logic implementation of the code to ensure that the code has the key components of the key

logic. Realize no known vulnerabilities; at the same time, enter the vulnerability mining mode for new scenarios and

new technologies, and find possible 0day errors.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using automated

analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

NO. Audit Items Result

1 Replay Vulnerability Passed

2 Reordering Vulnerability Passed

3

NO. Audit Items Result

3 Race Conditions Vulnerability Passed

4 Authority Control Vulnerability Passed

5 Block data Dependence Vulnerability Passed

6 Explicit Visibility of Functions Audit Passed

7 Arithmetic Accuracy Deviation Vulnerability Passed

8 Malicious Event Log Audit Some Risks

9 Others Some Risks

10 State Consistency Audit Passed

11 Failure Rollback Audit Passed

12 Unit Test Audit Passed

13 Integer Overflow Audit Some Risks

14 Parameter Verification Audit Passed

15 Error Unhandle Audit Passed

16 Boundary Check Audit Passed

17 Weights Audit Passed

18 Macros Audit Passed

3 Project Overview

3.1 Project Introduction

4

Project source code repository:

https://github.com/OAK-Foundation/OAK-blockchain

Module:

pallets/automation-time/src/ * .rs

Commit:

643342e936bbc821d2fb91be69872e4fcecd2273

Project address:

https://github.com/OAK-Foundation/moonbeam

pallets/parachain-staking/src/ * .rs

Commit:

15b1a1f62483aa6babe1412d3ea1f18770a6b2a4

Review Commit:

https://github.com/OAK-Foundation/OAK-blockchain/commit/cba1acd6961fce877cef95c6b6a198ea8b415a0f

3.2 Coverage

Target Code and Revision:

https://github.com/OAK-Foundation/OAK-blockchain

3.3 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Calculate inaccurate

risk
Integer Overflow

Audit
Suggestion Fixed

N2
User balance is not

checked
Others Suggestion Ignored

5

NO Title Category Level Status

N3
Return Value Not

Checked
Others Low Ignored

N4
Calculate inaccurate

risk
Integer Overflow

Audit
Suggestion Ignored

N5 Missing logic Others Low Ignored

N6
Missing error

message
Malicious Event Log

Audit
Suggestion Ignored

4 Findings

4.1 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

automation-time

Function Name
Parameter
verification

Overflow Authority Weight

schedule_notify_task 4/4 ok ensure_signed 133_327_009+

schedule_native_transf
er_task

5/5 ok ensure_signed 87_915_009+

cancel_task 2/2 ok ensure_signed 1_192_000_052+

force_cancel_task 2/2 ok ensure_root 1_203_000_052+

parachain-staking

Function Name
Parameter
verification

Overflow Authority Weight

6

parachain-staking

set_staking_expectatio
ns

2/2 ok ensure_origin 18_965_002+

set_inflation 2/2 ok ensure_origin 54_552_002+

set_parachain_bond_ac
count

2/2 ok ensure_origin 18_127_002+

set_parachain_bond_re
serve_percent

2/2 ok ensure_origin 17_902_002+

set_total_selected 2/2 ok ensure_root 20_823_002+

set_collator_commissio
n

2/2 ok ensure_root 17_257_002+

set_blocks_per_round 2/2 ok ensure_root 59_571_002+

join_candidates 3/3 ok ensure_root 65_829_011+

schedule_leave_candid
ates

2/2 ok ensure_signed 63_608_004+

execute_leave_candidat
es

3/3 ok ensure_signed 33_442_012+

cancel_leave_candidate
s

2/2 ok ensure_signed 62_474_004+

go_offline 1/1 ok ensure_signed 28_328_004+

go_online 1/1 ok ensure_signed 28_177_004+

candidate_bond_more 2/2 ok ensure_signed 28_177_008+

schedule_candidate_bo
nd_less

2/2 ok ensure_signed 26_339_002+

execute_candidate_bon
d_less

2/2 ok ensure_signed 56_074_008+

cancel_candidate_bond
_less

1/1 ok ensure_signed 23_146_002+

7

parachain-staking

delegate 5/5 ok ensure_signed 114_718_012+

schedule_leave_delegat
ors

1/1 ok ensure_signed 27_072_002+

execute_leave_delegato
rs

3/3 ok ensure_signed 33_909_008+

cancel_leave_delegator
s

1/1 ok ensure_signed 24_002_002+

schedule_revoke_deleg
ation

2/2 ok ensure_signed 32_552_004+

delegator_bond_more 3/3 ok ensure_signed 63_313_012+

schedule_delegator_bo
nd_less

3/3 ok ensure_signed 32_393_004+

execute_delegation_req
uest

3/3 ok ensure_signed 76_987_014+

cancel_delegation_requ
est

3/3 ok ensure_signed 36_326_004+

4.2 Vulnerability Summary

[N1] [Suggestion] Calculate inaccurate risk

Category: Integer Overflow Audit

Content

There are some risks of value overflow.

saturating_mul , saturating_sub , saturating_add and +-*/, +=, -=

saturating at the numeric bounds instead of overflowing, The returned result is inaccurate.

Solution

pallets/automation-time/src/lib.rs

8

Use checked_add/checked_sub/checked_mul/checked_div instead of

saturating_add/saturating_sub/saturating_mul/saturating_div and +-*/, +=, -= .

Status

Fixed

[N2] [Suggestion] User balance is not checked

Category: Others

Content

The amount transferred by the user is not compared with the user's balance here, and the user may not have enough

NativeToken.

pub fn schedule_native_transfer_task(

 origin: OriginFor<T>,

 provided_id: Vec<u8>,

 execution_times: Vec<UnixTime>,

 recipient_id: T::AccountId,

 #[pallet::compact] amount: BalanceOf<T>,

) -> DispatchResult {

 let who = ensure_signed(origin)?;

 // check for greater than existential deposit

 if amount < T::NativeTokenExchange::minimum_balance() {

 Err(<Error<T>>::InvalidAmount)?

 }

 // check not sent to self

 if who == recipient_id {

 Err(<Error<T>>::TransferToSelf)?

 }

 let action =

 Action::NativeTransfer { sender: who.clone(), recipient: recipient_id, amount };

 Self::validate_and_schedule_task(action, who, provided_id, execution_times)?;

 Ok(().into())

}

pallets/automation-time/src/lib.rs

9

Solution

Compare the user's transfer amount with the balance

Status

Ignored; This is expected behaviour.

[N3] [Low] Return Value Not Checked

Category: Others

Content

//#L962

T::Currency::unreserve(&bond.owner, bond.amount);

//#L1004

T::Currency::unreserve(&candidate, state.bond);

//#L1390

T::Currency::unreserve(&delegator, amount);

//#L463

T::Currency::unreserve(&who, request.amount.into());

//#L648:651

T::Currency::unreserve(&lowest_bottom_to_be_kicked.owner,lowest_bottom_to_be_kicked.a

mount,);

//#L279

T::Currency::unreserve(&delegator, amount);

pallets/parachain-staking/src/lib.rs

pallets/parachain-staking/src/types.rs

pallets/parachain-staking/src/delegation_requests.rs

pallets/parachain-staking/src/migrations.rs

10

//#L404

T::Currency::unreserve(&owner, *amount);

The return value of unreserve needs to be checked.

Solution

Check the return value.

Status

Ignored; If the account has less than that locked up. Not only is this unlikely to happen, there's nothing for parachain-

staking to do if it occurs.

[N4] [Suggestion] Calculate inaccurate risk

Category: Integer Overflow Audit

Content

There are some risks of value overflow.

saturating_mul , saturating_sub , saturating_add and +-*/, +=, -=

saturating at the numeric bounds instead of overflowing, The returned result is inaccurate.

Solution

Use checked_add/checked_sub/checked_mul/checked_div instead of

saturating_add/saturating_sub/saturating_mul/saturating_div and +-*/, +=, -= .

Status

Ignored; These functions are performed on the Balance type. Since the same type is used for total_issuance I

don't think we need to be worried about a portion of the issuance overflowing the data type.

pallets/parachain-staking/src/types.rs

pallets/parachain-staking/src/lib.rs

pallets/parachain-staking/src/delegation_requests.rs

11

[N5] [Low] Missing logic

Category: Others

Content

It is necessary to make a judgment in the case of deposit_into_existing failure . If the transfer fails, the

entire transaction needs to be rolled back.

fn prepare_staking_payouts(now: RoundIndex) {

 // payout is now - delay rounds ago => now - delay > 0 else return early

 let delay = T: :RewardPaymentDelay: :get();

 if now <= delay {

 return;

 }

 let round_to_payout = now.saturating_sub(delay);

 let total_points = <Points < T >> ::get(round_to_payout);

 if total_points.is_zero() {

 return;

 }

 let total_staked = <Staked < T >> ::take(round_to_payout);

 let total_issuance = Self: :compute_issuance(total_staked);

 let mut left_issuance = total_issuance;

 // reserve portion of issuance for parachain bond account

 let bond_config = <ParachainBondInfo < T >> ::get();

 let parachain_bond_reserve = bond_config.percent * total_issuance;

 if let Ok(imb) = T: :Currency: :deposit_into_existing(& bond_config.account,

parachain_bond_reserve) {

 // update round issuance iff transfer succeeds

 left_issuance = left_issuance.saturating_sub(imb.peek());

 Self: :deposit_event(Event: :ReservedForParachainBond {

 account: bond_config.account,

 value: imb.peek(),

 });

 }

 let payout = DelayedPayout {

 round_issuance: total_issuance,

 total_staking_reward: left_issuance,

 collator_commission: <CollatorCommission < T >> ::get(),

pallets/parachain-staking/src/lib.rs

12

 };

 < DelayedPayouts < T >> ::insert(round_to_payout, payout);

}

pub(crate) fn pay_one_collator_reward(paid_for_round: RoundIndex, payout_info:

DelayedPayout < BalanceOf < T >> ,) - >(Option < (T: :AccountId, BalanceOf < T >) >

, Weight) {

 // TODO: it would probably be optimal to roll Points into the DelayedPayouts

storage

 // item so that we do fewer reads each block

 let total_points = <Points < T >> ::get(paid_for_round);

 if total_points.is_zero() {

 // TODO: this case is obnoxious... it's a value query, so it could mean one

of two

 // different logic errors:

 // 1. we removed it before we should have

 // 2. we called pay_one_collator_reward when we were actually done with

deferred

 // payouts

 log: :warn ! ("pay_one_collator_reward called with no <Points<T>> for the

round!");

 return (None, 0u64.into());

 }

 let mint = |amt: BalanceOf < T > ,

 to: T: :AccountId | {

 if let Ok(amount_transferred) = T: :Currency: :deposit_into_existing(& to,

amt) {

 Self: :deposit_event(Event: :Rewarded {

 account: to.clone(),

 rewards: amount_transferred.peek(),

 });

 }

 };

 let collator_fee = payout_info.collator_commission;

 let collator_issuance = collator_fee * payout_info.round_issuance;

 if let Some((collator, pts)) = <AwardedPts < T >>

::iter_prefix(paid_for_round).drain().next() {

 let mut extra_weight = 0;

 let pct_due = Perbill: :from_rational(pts, total_points);

13

 let total_paid = pct_due * payout_info.total_staking_reward;

 let mut amt_due = total_paid;

 // Take the snapshot of block author and delegations

 let state = <AtStake < T >> ::take(paid_for_round, &collator);

 let num_delegators = state.delegations.len();

 if state.delegations.is_empty() {

 // solo collator with no delegators

 mint(amt_due, collator.clone());

 extra_weight += T: :OnCollatorPayout: :on_collator_payout(paid_for_round,

collator.clone(), amt_due,);

 } else {

 // pay collator first; commission + due_portion

 let collator_pct = Perbill: :from_rational(state.bond, state.total);

 let commission = pct_due * collator_issuance;

 amt_due = amt_due.saturating_sub(commission);

 let collator_reward = (collator_pct *

amt_due).saturating_add(commission);

 mint(collator_reward, collator.clone());

 extra_weight += T: :OnCollatorPayout: :on_collator_payout(paid_for_round,

collator.clone(), collator_reward,);

 // pay delegators due portion

 for Bond {

 owner,

 amount

 } in state.delegations {

 let percent = Perbill: :from_rational(amount, state.total);

 let due = percent * amt_due;

 if ! due.is_zero() {

 mint(due, owner.clone());

 }

 }

 }

 (Some((collator, total_paid)), T: :WeightInfo:

:pay_one_collator_reward(num_delegators as u32) + extra_weight,)

 } else {

 // Note that we don't clean up storage here; it is cleaned up in

 // handle_delayed_payouts()

 (None, 0u64.into())

 }

}

14

Solution

If the transfer fails, the transaction should be rolled back.

Status

Ignored; The project party considers that it will be updated in subsequent versions.

[N6] [Suggestion] Missing error message

Category: Malicious Event Log Audit

Content

let new_bottom_delegation = top_delegations.delegations.pop().expect(""); missing error

message.

pub fn add_top_delegation < T: Config > (& mut self, candidate: &T: :AccountId,

delegation: Bond < T: :AccountId, BalanceOf < T >> ,) - >Option < Balance > where

BalanceOf < T > :Into < Balance > +From < Balance > ,

{

 let mut less_total_staked = None;

 let mut top_delegations = <TopDelegations < T >>

::get(candidate).expect("CandidateInfo existence => TopDelegations existence");

 let max_top_delegations_per_candidate = T: :MaxTopDelegationsPerCandidate:

:get();

 if top_delegations.delegations.len() as u32 == max_top_delegations_per_candidate

{

 // pop lowest top delegation

 let new_bottom_delegation = top_delegations.delegations.pop().expect("");

 top_delegations.total =

top_delegations.total.saturating_sub(new_bottom_delegation.amount);

 if matches ! (self.bottom_capacity, CapacityStatus: :Full) {

 less_total_staked = Some(self.lowest_bottom_delegation_amount);

 }

 self.add_bottom_delegation: :<T > (true, candidate, new_bottom_delegation);

 }

 // insert into top

 top_delegations.insert_sorted_greatest_to_least(delegation);

 // update candidate info

pallets/parachain-staking/src/types.rs

15

 self.reset_top_data: :<T > (candidate.clone(), &top_delegations);

 if less_total_staked.is_none() {

 // only increment delegation count if we are not kicking a bottom delegation

 self.delegation_count = self.delegation_count.saturating_add(1u32);

 } < TopDelegations < T >> ::insert(& candidate, top_delegations);

 less_total_staked

}

Solution

Record the corresponding error message.

Status

Ignored; The project party considers that it will be updated in subsequent versions.

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002206220001 SlowMist Security Team 2022.06.06 - 2022.06.22 Passed

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 2 low risk, 4 suggestion vulnerabilities.

16

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on

the documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

17

