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ABSTRACT
Trade execution on Decentralized Exchanges (DEXes) is automatic
and does not require individual buy and sell orders to be matched.
Instead, liquidity aggregated in pools from individual liquidity
providers enables trading between cryptocurrencies. The largest
DEX measured by trading volume, Uniswap V3, promises a DEX
design optimized for capital efficiency. However, Uniswap V3 re-
quires far more decisions from liquidity providers than previous
DEX designs.

In this work, we develop a theoretical model to illustrate the
choices faced by Uniswap V3 liquidity providers and their impli-
cations. Our model suggests that providing liquidity on Uniswap
V3 is highly complex and requires many considerations from a
user. Our supporting data analysis of the risks and returns of real
Uniswap V3 liquidity providers underlines that liquidity providing
in Uniswap V3 is incredibly complicated, and performances can
vary wildly. While there are simple and profitable strategies for
liquidity providers in liquidity pools characterized by negligible
price volatilities, these strategies only yield modest returns. Instead,
significant returns can only be obtained by accepting increased
financial risks and at the cost of active management. Thus, provid-
ing liquidity has become a game reserved for sophisticated players
with the introduction of Uniswap V3, where retail traders do not
stand a chance.
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1 INTRODUCTION
Since the inception of Bitcoin [24] in 2008 and later Ethereum [27]
in 2014, the capabilities of blockchains have significantly evolved.
Most notably, the introduction of smart contracts by Ethereum
enabled the blockchain to host an entire financial system com-
monly known as decentralized finance (DeFi). DeFi has shifted the
widespread perception of cryptocurrencies being a tool for price
speculation to a technology with the potential to revolutionize the
future of finance.

Decentralized exchanges (DEXes) represent a DeFi cornerstone
technology. DEXes allow users to exchange cryptocurrencies with-
out giving up custody of their assets. Users interact directly with
the smart contracts that build the DEXes. Trading is enabled by
liquidity for each pair of tradeable cryptocurrencies reserved in a
respective smart contract referred to as a liquidity pool. Thus, when
a user wishes to exchange𝑋 -tokens for 𝑌 -tokens, the user interacts
with the respective liquidity pool, deposits 𝑋 -tokens in the pool,
and receives 𝑌 -tokens from the pool’s liquidity. Individual liquidity
providers supply the pool’s liquidity by depositing both assets in

the smart contract. For their service, the liquidity providers receive
transaction fees from the trades supported by their liquidity.

Most DEXes on the Ethereum platform implement a constant
function market maker (CFMM) for automatic trade execution [2, 3,
6, 10, 15]. Uniswap [10] is currently the biggest DEX on Ethereum [9]
in terms of volume. There are two actively used versions of Uniswap:
V2 [13] and V3 [14]. While Uniswap V2 implements a constant
product market maker (CPMM), where the liquidity supplied by
any liquidity provider supports trading on the entire price range,
Uniswap V3 utilizes a new CPMM design intended to optimize
capital efficiency. Uniswap V3 has acquired a significant market
share throughout the past year and has overtaken its predecessor
to become the DEX with the largest trading volume [8].

Liquidity providers on Uniswap V3 specify the price range in
which they wish to supply their liquidity. Thus, the choices liquidity
providers face have dramatically increased. In addition to choosing
the pool to provide liquidity (as in Uniswap V2), in Uniswap V3,
liquidity providers must also specify the position and width of the
price range for which they wish to supply liquidity. This choice
significantly impacts their expected returns, as well as the related
financial risks1. The increased complexity of providing liquidity
begs the question of whether liquidity providing has become a
game of sophisticated players or whether retail traders still stand
a chance in comparison. To phrase it more pointedly, are retail
traders looking for high returns as liquidity providers running a
risk of losing it all?

In this work, we derive an analytical expression for the imper-
manent loss of a liquidity position. Impermanent loss is a liquidity
provider’s risk of a decrease in the value of their liquidity position
in comparison to the value of the initial assets. We find that the
impermanent loss increases at a faster pace with concentrated liq-
uidity. Furthermore, we present a theoretical model illustrating the
complexities liquidity providers face.

In addition, we analyze the performance of liquidity positions
in the largest Uniswap V3 pools and show that the returns and
risks of liquidity positions vary wildly. Both our model and the
data highlight that due to the complexity of Uniswap V3, providing
liquidity in price volatile pools requires both active management
and high sophistication. Retail traders, unwilling to risk significant
losses, should stick to simple strategies offering only low returns
but also promising only small financial risks.

We further find that the interests of high profit seeking liquidity
providers and the protocol may be misaligned. While the protocol
seeks long term liquidity providers in order to offer traders sufficient
market depth at any time, liquidity providers maximize their profit
by actively managing their positions. The later could lead to a
significant draining of liquidity in turbulent market situations.

1We focus on the financial risks stemming from price fluctuations and analyze them
using historical data. Other risk, e.g., risks related to the protocol, are not considered.
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2 RELATEDWORK
Several studies of the risks and returns of liquidity providers in the
original CPMM exist. Evans [17] studies the returns of liquidity
providers and shows that they are capable of replicating various
trading strategies and financial derivatives. In a further study, Evans
et al. [18] find the optimal transaction fee for liquidity pools to
attract liquidity. On the other hand, we empirically analyze the
risks and returns of individual liquidity providers and illustrate the
complexity facing liquidity providers in the novel CPMM design
utilized by Uniswap V3.

Heimbach et al. [20] present an empirical study of the behavior
of Uniswap V2 liquidity providers, as well as general risk and return
metrics of Uniswap V2 pools. Their work shows the performance of
liquidity providers is largely driven by the pool’s price volatility. In
contrast, our work is focused on the risk and returns of Uniswap V3
liquidity providers. We find that providing liquidity in Uniswap V3
is significantly more complex, exemplified by the stark difference
in liquidity position returns dependent on their strategies, even
within the same pool.

Neuder et al. [25] study strategic liquidity provision in Uniswap
V3 and evaluate three classes of strategies for liquidity providers.
However, their analysis makes several strong assumptions and, for
instance, does not take into account the losses liquidity providers
can face due to changing asset prices – the sole driver of liquidity
provider losses. In a similar line of work, Fritsch [19] quantifies the
performance of a set of liquidity provider strategies by simulating
them with historical trading data. We model the considerations
liquidity providers must face when choosing the liquidity position
in our work. Further, we empirically analyze the risks and returns
of real Uniswap V3 liquidity providers.

In a series of blog posts, Lambert [21, 22] investigates several
challenges of providing liquidity on Uniswap V3 and makes the link
between a Uniswap V3 liquidity position to financial derivatives.
The presented analysis makes several simplifications to obtain an
analytical solution. However, some of these assumptions are not
supported by the actual data. We, on the other hand, generalize
Lambert’s ideas in our model and highlight the complexities faced
by liquidity providers.

A recent report presented by Loesch et al. [23] makes a first
attempt at analyzing the returns of real Uniswap V3 liquidity po-
sitions and concludes that around 50% of liquidity positions are
losing money. However, their report has several shortcomings. For
instance, they only consider the position’s lifetime as a contribut-
ing factor to the liquidity position’s return in their analysis. In our
work, we account for multiple factors that influence the returns
of liquidity providers on Uniswap V3 both theoretically and em-
pirically, finding that with appropriate considerations providing
liquidity on Uniswap V3 can be profitable.

3 CONSTANT PRODUCT MARKET MAKER
Uniswap V3 [14] functions as an automated market maker (AMM),
i.e., trading is automatic, and a predefined algorithm controls the
cryptocurrency prices. More specifically, Uniswap V3, like its prede-
cessors Uniswap V1 and V2 [13], utilizes the most widely adopted
AMM subclass: constant product market maker (CPMM).

Uniswap aggregates liquidity in what is known as a liquidity pool
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Figure 1: CPMM price curve with virtual liquidity. The blue
price curve ensures the constant product 𝑥 · 𝑦. The current
marginal market price 𝑆 is at point 𝑚 and is given by the
ratio of the virtual reserves, 𝑆 = 𝑦/𝑥 .

for each tradeable cryptocurrency pair. We note that Uniswap V2
and V3 allow for the creation of liquidity pools between any ERC-20
tokens – an Ethereum standard for fungible tokens. Many individual
liquidity providers supply the pool’s liquidity, and their aggregated
liquidity enables trading in the pool. The CPMM enforces that
during trading, the product between the reserves of the pool’s two
cryptocurrencies stays constant, i.e., the pool’s state moves along
the price curve drawn in Figure 1.

Uniswap V3’s two predecessors, as well as SushiSwap [6], employ
the original CPMM design. To illustrate the pricing mechanism of
the original CPMM, we consider a 𝑋 − 𝑌 pool between 𝑋 -tokens
and 𝑌 -tokens. If there are 𝑥𝑣2 𝑋 -tokens and 𝑦𝑣2 𝑌 -tokens reserved
in the pool, then the pool’s marginal price is given by 𝑆 = 𝑦𝑣2/𝑥𝑣2
and the pool’s liquidity is defined as 𝐿𝑣2 =

√
𝑥𝑣2 · 𝑦𝑣2 [13]. In this

traditional implementation of CPMM, liquidity placed in the pool
supports trading on the entire price range (0,∞) (cf. Figure 2a).

With Uniswap V3, Adams et al. [14] introduce a novel CPMM
design. Uniswap V3 liquidity providers specify the price range
[𝑆𝑙 , 𝑆𝑢 ] in which they wish to supply liquidity (cf. Figure 2b). Their
liquidity then only supports trading within this price range. Thus,
Uniswap V3 has an increased liquidity concentration around the
current price and thereby increases the market’s capital efficiency.

We note that liquidity providers can only choose the price bound-
aries of their liquidity position from a predefined set of the pool’s
initialized ticks. There is a tick at every integer exponent of 1.0001,
and the price of tick 𝑖 (𝑖 ∈ Z) is given by

𝑆 (𝑖) = 1.0001𝑖 .

Consequently, each tick is 0.01% (one basis points (bps)) away from
each neighboring tick. Not every tick can be initialized in a pool,
instead, only ticks with indexes divisible by the pool’s predefined
tick spacing (𝑡𝑠 ) can be initialized. Figure 2c shows a schematic
representation of a liquidity allocation across a liquidity pool’s
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Figure 2: Schematic representation of liquidity allocation
on CPMMs. The points 𝑆𝑙 and 𝑆𝑢 specify the lower and up-
per bounds of the liquidity position’s price range, respec-
tively. Unlike on Uniswap V2, liquidity is not distributed
uniformly across the entire price range but is determined
by the choices of the liquidity providers.

price range. The liquidity is no longer constant across the entire
price range, instead, only between the pool’s initialized ticks.

Uniswap V3 utilizes the concept of virtual reserves, adjusted
larger reserves, to describe the pool’s behavior between two ad-
jacent ticks 𝑇𝑙 and 𝑇𝑢 . The virtual reserves act as if the liquidity
in the entire pool matches that of the current price range. Thus,
the virtual reserves of the current price range are a transformation
of the range’s real reserves that allow for the application of the
constant product formula. In the following we consider a pool with
reserves 𝑥real and 𝑦real between two adjacent ticks. The price range
between ticks 𝑇𝑙 and 𝑇𝑢 is given by [𝑆𝑙 , 𝑆𝑢 ]. Instead of ensuring
that the product between the reserves stays constant, the proto-
col ensures that the product of the virtual reserves 𝑥 and 𝑦 stays
constant, i.e.,

𝑥 · 𝑦 = 𝐿2,

where 𝐿 the liquidity reserved in between ticks 𝑇𝑙 and 𝑇𝑢 [14].
Further, the marginal price is given by 𝑆 = 𝑦/𝑥 . The following
relationship then holds between the virtual reserves, liquidity, and
marginal price:

𝑥 =
𝐿
√
𝑆

𝑦 = 𝐿
√
𝑆.

Thus, the virtual reserves behave according to the constant product
price curve as shown in Figure 1. Similarly, the real reserves can be
obtained as follows:

𝑥real = 𝑥 − 𝐿
√
𝑆𝑢

=
𝐿
√
𝑆
− 𝐿
√
𝑆𝑢

𝑦real = 𝑦 − 𝐿
√︁
𝑆𝑙 = 𝐿

√
𝑆 − 𝐿

√︁
𝑆𝑙 .

Observe that the pool only needs to maintain sufficient reserves to
support trading within the price boundaries [𝑆𝑙 , 𝑆𝑢 ]. Thus, the real
reserves of 𝑋 -token shrink as the value of 𝑋 in terms of 𝑌 increases
and are fully depleted at the upper price boundary 𝑆𝑢 . The opposite
holds for the real reserves of 𝑌 -token.

We demonstrate Uniswap’s trading mechanism by, again, con-
sidering a liquidity pool 𝑋 −𝑌 . The (virtual) reserves at the current
price are given by 𝑥 𝑋 -tokens and 𝑦 𝑌 -tokens. In Uniswap V2, a
trader wishing to exchange 𝛿𝑥 𝑋 -tokens for 𝑌 -tokens, will receive
𝛿𝑦 𝑌 -tokens, where

𝛿𝑦 = 𝑦 − 𝑥 · 𝑦
𝑥 + (1 − 𝑓 )𝛿𝑥

=
𝑦 (1 − 𝑓 )𝛿𝑥
𝑥 + (1 − 𝑓 )𝛿𝑥

.

Here, 𝑓 is the transaction fee charged relative to the trader’s input
amount 𝛿𝑥 [13]. As long as the pool’s price does not move across an
initialized tick, the same holds in Uniswap V3. Otherwise, the trade
executes at the available liquidity depth until it reaches the next
initialized price tick. Then the remaining trade is completed at the
available liquidity depth in the subsequent interval. This procedure
re-applies until the entire trade input is swapped.

The collected transaction fees are distributed pro-rata to the
pool’s liquidity providers, who have deposited liquidity at the
price the asset pairs are trading at. We note that while the fees
in Uniswap V2 were compounded, they are not in Uniswap V3.
Further, observe that on Uniswap V3 the same asset pairs can be
tradable in different pools that differ by the fee that is charged to
traders. These are referred to as pool fee tiers. The possible tiers are
𝑓 ∈ {0.01%, 0.05%, 0.3%, 1%}. Thus, the fees received by a liquidity
provider in the current price range are not only dependent on the
pool’s volume and liquidity depth but also on its fee tier. Uniswap
suggests the usage of lower transaction fees in pools with low rela-
tive price volatility between the two cryptocurrencies, such as two
stablecoins. As suggested by the name, stablecoins are designed to
have a stable price and are often pegged to the US$. Higher transac-
tion fees are suggested in pools with a high relative price volatility
between the two cryptocurrencies.

3.1 Liquidity Provision
In the original CPMM design, liquidity providers only choose a pool
and their liquidity supported trading on the entire price interval.
In comparison to holding their assets, liquidity providers’ returns
were positively influenced by transaction fees and negatively by
impermanent loss. The latter describes the risk of a liquidity provider
seeing the value of their reserved assets decrease in comparison to
the value of the initial assets. In particular, price changes between
the two reserved cryptocurrencies drive up a liquidity provider’s
impermanent loss. Thus, the returns of liquidity providers were
influenced by a pool’s volume and price volatility.

In Uniswap V3, liquidity providers must also specify the range
in which they wish to supply liquidity. It is, therefore, no longer
only a pool’s transaction fees and volatility but also the liquid-
ity provider’s price range that influences the returns. A liquidity
provider’s liquidity is only active when the pool’s price 𝑆 is within
her specified price range [𝑆𝑙 , 𝑆𝑢 ]. Whenever the liquidity is ac-
tive, it is facilitating transactions and, in turn, earns fees from the
pool’s transactions. When, however, the price is outside the liquid-
ity provider’s price range, her liquidity is inactive. More specifically,
a liquidity provider that places (virtual) liquidity �̃� into the pool
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𝑋 − 𝑌 in the price range [𝑆𝑙 , 𝑆𝑢 ] will have

𝑥real =


�̃� ·

(
1√
𝑆𝑙

− 1√
𝑆𝑢

)
𝑆 < 𝑆𝑙

�̃� ·
(

1√
𝑆
− 1√

𝑆𝑢

)
𝑆𝑙 ≤ 𝑆 < 𝑆𝑢

0 𝑆 ≥ 𝑆𝑢

(1)

𝑋 -tokens reserved in the pool when the pool’s price is 𝑆 , as well as

𝑦real =


0 𝑆 < 𝑆𝑙

�̃� ·
(√

𝑆 −
√︁
𝑆𝑙

)
𝑆𝑙 ≤ 𝑆 < 𝑆𝑢

�̃� ·
(√

𝑆𝑢 −
√︁
𝑆𝑙

)
𝑆 ≥ 𝑆𝑢

(2)

𝑌 -tokens [14] 2. Thus, when the price is within her price range, she
holds both tokens in the pool, and her liquidity is active, i.e., she is
earning fees. When, however, the price is outside the boundaries,
she only holds one of the tokens. More specifically, when 𝑆 < 𝑆𝑙 (the
price of 𝑋 with respect to 𝑌 decreases and is outside the boundary),
her liquidity only consists of 𝑋 -tokens. On the other side of her
price boundary, the opposite holds true. Thus, both the location
and width of the price range starkly influence a liquidity provider’s
return. While large price ranges decrease a liquidity provider’s
capital efficiency, the liquidity is likely active for longer periods.
Small price ranges, on the other hand, increase a liquidity provider’s
capital efficiency, i.e., she earns more fees relative to her liquidity
size when the price is in her range. At the same time, the price is
generally more likely to fall out of her range more quickly. Thus,
liquidity providers often readjust their liquidity positions following
price changes. In the following, we provide a thorough analysis and
evaluation of the risks and returns faced by Uniswap V3 liquidity
providers.

4 ANALYSIS
In this section, we discuss the factors influencing the performance of
liquidity positions on Uniswap V3. Liquidity providers face several
decisions when choosing their liquidity position. We provide a
theoretical discussion of the implications of each of these choices.

4.1 Impermanent Loss
We start by analyzing the main risk faced by liquidity providers:
impermanent loss. The impermanent loss describes the loss in value
of a liquidity position in comparison to holding the original assets
as the price changes. We start by deriving the impermanent loss of
a Uniswap V2 liquidity provider, which corresponds to a Uniswap
V3 liquidity provider setting her price range to (0,∞). Consider a
liquidity provider that places �̃� liquidity into a pool 𝑋 − 𝑌 when
the pool’s marginal price is 𝑆0. Thus, the liquidity provider places
𝑥0 = �̃�/

√
𝑆0 𝑋 -tokens and 𝑦0 = �̃�

√
𝑆0 𝑌 -tokens in the pool. The

value of the liquidity provider’s position at a later point, when the
pool’s price is 𝑆1, is given by:

𝑉v2,pos (�̃�, 𝑆1) = 𝑆1 · 𝑥1 + 𝑦1 =
�̃�

√
𝑆1

𝑆1 + �̃�
√︁
𝑆1 = 2�̃�

√︁
𝑆1,

where 𝑥1 and 𝑦1 are the liquidity provider’s assets in the pool. The
value of the liquidity provider’s original assets, on the other hand,

2The virtual liquidity �̃� can be expressed in terms of the initial deposited value 𝑉0
using𝑉0 = 𝑆0 · 𝑥0 + 𝑦0 .

Figure 3: Simulation of the impermanent loss of a liquidity
position on Uniswap V2 and Uniswap V3 for different liq-
uidity position widths. We set 𝑆𝑙 = 1/𝛼 · 𝑆0 and 𝑆𝑢 = 𝛼 · 𝑆0.

is given by

𝑉v2,hold (�̃�, 𝑆0, 𝑆1) = 𝑆1 · 𝑥0 + 𝑦0 =
�̃�

√
𝑆0

𝑆1 + �̃�
√︁
𝑆0 .

Thus, we can obtain the impermanent loss as follows:

ILv2 (𝑆0, 𝑆1) =
𝑉v2,pos −𝑉v2,hold

𝑉v2,hold

=

2�̃�
√
𝑆1 −

(
�̃�√
𝑆0
𝑆1 + �̃�

√
𝑆0
)

�̃�√
𝑆0
𝑆1 + �̃�

√
𝑆0

=
©«
2 ·

√︃
𝑆1
𝑆0

1 + 𝑆1
𝑆0

− 1
ª®®¬ .

We note that a liquidity providers impermanent loss is zero when
𝑆0 = 𝑆1, i.e., the price is the same as at the initial time of liquidity
injection. Otherwise, the impermanent loss is always negative3.
We plot the impermanent loss as a function of the relative price
change for a liquidity provider on the entire range, the equivalent
of a Uniswap V2 liquidity provider, in yellow in Figure 3.

In the following, we repeat the same steps to obtain the imper-
manent loss of a liquidity provider that supplies liquidity 𝐿 into
the pool 𝑋 − 𝑌 in the price range [𝑆𝑙 , 𝑆𝑢 ]. The liquidity provider
inserts the liquidity into the pool, when the pool’s marginal price
is 𝑆0 and we, again, derive the impermanent loss at a later point
in time, when the pool’s marginal price is 𝑆1. We start by obtain-
ing the position value at price 𝑆1 with the help of Equation 1 and

3By convention the impermanent loss is smaller or equal to zero, thus, a non-zero
impermanent loss is detrimental to the liquidity provider.
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Equation 2:

𝑉pos (�̃�, 𝑆1, 𝑆𝑙 , 𝑆𝑢 ) = 𝑆1 · 𝑥1 + 𝑦1

=


�̃� · 𝑆1

(
1√
𝑆𝑙

− 1√
𝑆𝑢

)
𝑆1 < 𝑆𝑙

�̃�

(
2
√
𝑆1 −

√︁
𝑆𝑙 − 𝑆1√

𝑆𝑢

)
𝑆𝑙 ≤ 𝑆1 < 𝑆𝑢

�̃� ·
(√

𝑆𝑢 −
√︁
𝑆𝑙

)
𝑆1 ≥ 𝑆𝑢 .

Here, 𝑥1 𝑋 -tokens and 𝑦1 𝑌 -tokens are the liquidity position’s real
reserves in the pool. We obtain the value of the original inserted
liquidity similarly:

𝑉hold (�̃�, 𝑆0, 𝑆1, 𝑆𝑙 , 𝑆𝑢 ) = 𝑆1 · 𝑥0 + 𝑦0

=


�̃� · 𝑆1

(
1√
𝑆𝑙

− 1√
𝑆𝑢

)
𝑆0 < 𝑆𝑙

�̃�

(
𝑆0+𝑆1√

𝑆0
−
√︁
𝑆𝑙 − 𝑆1√

𝑆𝑢

)
𝑆𝑙 ≤ 𝑆0 < 𝑆𝑢

�̃� ·
(√

𝑆𝑢 −
√︁
𝑆𝑙

)
𝑆0 ≥ 𝑆𝑢 ,

where 𝑥0 𝑋 -tokens and 𝑦0 𝑌 -tokens are the reserves initially placed
in the pool. The impermanent loss can then be obtained from the
two preceding expression as follows:

𝐼𝐿(𝑆0, 𝑆1, 𝑆𝑙 , 𝑆𝑢 ) =
𝑉pos −𝑉hold

𝑉hold
.

We simulate the impermanent loss of a liquidity provider with
price range [1/𝛼 · 𝑆0, 𝛼 · 𝑆0] for 𝛼 ∈ [1.1, 4, 20] in Figure 3. Notice
that the smaller 𝛼 , i.e., the tighter the price range, the faster the im-
permanent loss increases. Thus, not only do liquidity providers run
a higher risk of their liquidity becoming idle, when the pool’s price
moves outside their interval, but their impermanent loss increases
more quickly as well. The liquidity of liquidity providers with a
wider price interval, on the other hand, is less capital efficient. They
earn less fees for their liquidity, when the price is in the interval.

Figure 3 shows the impermanent loss of a liquidity provider who
enters the pool when the price is in the middle of her interval. In
Figure 4, on the other hand, we show the impermanent loss of a
liquidity provider that enters the pool, when the price is on the
edge of her interval: 𝑆0 = 𝑆𝑙 (drawn in green) and 𝑆0 = 𝑆𝑢 (drawn
in violet). Notice that when the price remains outside the interval,
i.e., 𝑆1 ≤ 𝑆𝑙 for 𝑆0 = 𝑆𝑙 , the impermanent loss is zero. However,
unless the price moved in and out of the interval in the meantime,
the liquidity provider also did not earn any fees. As soon as the
price moves into the interval and beyond, the impermanent loss
builds up quickly.

When choosing where to provide liquidity, Uniswap V3 liquidity
providers must account for risks stemming from the impermanent
loss, which are only negligible when little to no price movements
are expected for the pool.

4.2 Selection of Liquidity Position
In addition to the negative influence of the experienced imperma-
nent loss, a liquidity provider’s return 𝑅 is positively influenced by
the fees earned 𝐹 and given by

𝑅(𝑆0, 𝑆1, 𝑆𝑙 , 𝑆𝑢 , 𝐹 ) =
𝑉pos + 𝐹 −𝑉hold

𝑉hold
. (3)

We note that the return compares the value of the initial assets
deposited into the liquidity position to the value of the liquidity

Figure 4: Simulation of the impermanent loss of a liquidity
position minted outside the current price on Uniswap V3.
The respective price ranges are set [𝑆0, 2 · 𝑆0] and [0.5 · 𝑆0, 𝑆0].

position (including the earned fees). This allows the performance
comparison of owning the two tokens and providing liquidity vs.
just owning the two tokens. This performance measurement is
more suited than comparing it to a fixed currency, for example,
US$, as it is not dominated by the cryptocurrencies price evolution
compared to this fixed currency, but rather allows to pinpoint the
return that stems from the actual decision of providing liquidity.

The fees collected are distributed pro-rata to the pool’s liquidity
providers, who have deposited liquidity at the price the asset pairs
are trading at. We note that on Uniswap the same asset pairs can be
tradable in different pools that differ by the fee that is charged to
traders. These are referred to as pool fee tiers. The possible tiers are
𝑓 ∈ {0.01%, 0.05%, 0.3%, 1%}. Thus, the fees received by a liquidity
provider in the current price range are not only dependent on the
pool’s volume and liquidity depth but also on its fee tier.

Additionally, to garner fees, the selection of the liquidity posi-
tion’s price range is crucial. For pairs of stablecoins, the acquired
fees are directly determined by the price range and trading volume,
as the impermanent loss is insignificant. Thus, liquidity providers
deposit in a narrow price range near the stable ratio. However,
in volatile pools, like Ether in US$, selecting a suitable liquidity
position is more challenging as the price is more likely to exit the
chosen price range leading to a higher impermanent loss and no
further fees being collected.

The feature that fees are only collected as long as the price re-
mainswithin a certain bandwidth, necessitates the liquidity provider
to gauge the probability thereof. This requirement naturally sug-
gests adopting methods used for pricing financial derivatives where
short- and medium-term price predictions are essential. The most
well-known model for modeling the future development of the
price of a risky asset 𝑆 (𝑡) is the Black-Scholes market model, where
the price is represented as an Itô process satisfying the stochastic
differential equation

𝑑𝑆 (𝑡) = `𝑆 (𝑇 )𝑑𝑡 + 𝜎𝑆 (𝑡)𝑑𝑊 (𝑡),

where ` is called the drift of the asset price and determines the
expectation value of the future price, i.e., E[𝑆 (𝑡)] = 𝑆0𝑒𝑥𝑝 (`𝑡) [16].
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Figure 5: Simulation of daily asset price paths over 30 days
relative to initial price 𝑆0. The shaded area shows 2-𝜎 level of
the asset price distribution. Note that the width of this area
growswith the square root of time (geometric Brownianmo-
tion). In this plot only 600 of 40’000 paths used in total are
shown.

The volatility of the asset price is denoted as𝜎 , and𝑊 (𝑡) is aWiener
process. Note that the term risky asset is adopted from finance,
but in our case, the choice of which coin in a pool is considered
the risky asset is arbitrary. Rather, it just represents a choice of
measuring the price of that coin 𝑆 (𝑡) with respect to the other
coin. Throughout this section, we pick an annual volatility of 70%,
which is reasonable for an asset like Ether measured in US$ (see for
example [5]). Furthermore, we choose the drift to be zero, as the
short-term price movements are mainly governed by the volatility.
Finally, we use the terminology from finance and say that a liquidity
position is in the money (ITM) if the asset price is within the price
range the liquidity provider chose. In the opposite case, we say the
position is out of the money (OTM).

Given the initial asset price 𝑆 (0) the above differential equation
has the formal solution

𝑆 (𝑡) = 𝑆 (0) exp
(
`𝑡 − 𝜎2

2
𝑡 + 𝜎𝑊 (𝑡)

)
. (4)

As the liquidity provider only collects fees if the price remains
within its selected price range, we are interested in a suitable selec-
tion of the liquidity range. To this end, we numerically calculate
40’000 possible future daily asset price paths using Equation 4 (cf.
Figure 5) and compute the probability that after time𝑇 the asset has
remained in the liquidity range determined by 𝛼 , where as in Fig-
ure 3, we assume that the initial price 𝑆0 is related to the lower and
upper bound of the liquidity position by 𝑆𝑙 = 𝑆0/𝛼 and 𝑆𝑢 = 𝛼𝑆0,
respectively.

This probability 𝑃ITM (𝑡 ;𝛼) = 𝑃 (𝑆0/𝛼 < 𝑆 (𝑡) < 𝛼𝑆0) is shown
in Figure 6 as a function of time for different 𝛼 . As expected, it
becomes more likely that the position is OTM with passing time
and a larger 𝛼 means that the position is likely to remain ITM for
longer.

While the probability that a position remains ITM is important to
gauge for a liquidity provider, she is more interested in the time the

Figure 6: Probability that the asset price remains within the
liquidity position as a function of time for different 𝛼 . For a
volatile asset the probability that the asset moves out of the
selected range increases over time.

Figure 7: Expected proportion of time the asset price lies
within liquidity position for different 𝛼 . A wider position is
expected to remain in themoney, and hence collecting trans-
action fees, for a longer fraction of time.

price spends ITM as, during this time, she profits from each trade
that occurs in the pool. Given the probability that the price is ITM
at time 𝑡𝑖 , 𝑃ITM (𝑆𝑙 < 𝑆 (𝑡𝑖 ) < 𝑆𝑢 ), we can compute the expected
time the position is ITM relative to the total time passed 𝑡𝑛

E[𝑇ITM (𝑡𝑛 ;𝛼)] =
1
𝑡𝑛

𝑖=𝑛∑︁
𝑖=0

𝑃ITM (𝑡𝑖 ;𝛼)Δ𝑡,

where Δ𝑡 is the discrete time step (in our case one day). Figure 7
shows the fraction of time the price is in ITM as a function of time
passed. Again, the relative expected time ITM decays over time and
is smaller for narrower position

Figures 6 and 7 illustrate the relevance of both the time the liq-
uidity provider keeps the position active as well as the width of the
position’s price range. While a large width reduces the probability
that the position drops out of its price range, the fees collected per
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Figure 8: Simulation of the proportion of time the asset price
remains within the liquidity position relative to the liquid-
ity width 𝛼 after time 𝑇 . As the collected fees grows with
the time ITM and decays with position width the ratio of
the time ITM relative to 𝛼 is indicative for the collected fee.
Thus, the longer a liquidity provider intends to keep her liq-
uidity position in a volatile asset active, the larger the width
should be chosen.

trade are adversely affected by a widely spread liquidity position.
To illustrate this trade-off, we can consider the following simplified
model. Assume that near the current price, the liquidity distribu-
tion of the pool is uniformly distributed, i.e., the same amount of
liquidity in each tick. Then the fees collected by a position ITM are
inversely proportional to 𝛼 . On the other hand, the fees collected
are proportional to the trading volume multiplied by the time in the
money 𝑇ITM. Thus, in this model, the total fee a liquidity provider
collects is proportional to the time in the money divided by 𝛼

𝐹 ∝ 𝑇ITM/𝛼.

This quantity is depicted in Figure 8 as a function of 𝛼 at different
times 𝑇 . The plot shows that there is an optimal 𝛼 , which depends
on time, illustrating that the liquidity provider should carefully
select their liquidity position width.

We conclude this section by noting that the liquidity providers
in pools not consisting of two stablecoins face a complex problem.
The liquidity provider should first have a prediction of future price
and volatility developments of the selected pool. Therewith, she
chooses the price range of her liquidity position, bearing inmind the
time she intends to keep her funds locked, as well as the expected
impermanent loss suffered. Additionally, she should also consider
the liquidity distribution of the whole pool. Once the position is
open, the liquidity provider must constantly monitor the position,
update her predictions for the new market conditions and decide
when it is best to withdraw the funds. This complexity illustrates
that successfully providing liquidity in a volatile pool requires a
high level of sophistication.

5 REAL-WORLD MEASUREMENTS
With the complexities faced by liquidity providers when selecting
a liquidity position on Uniswap V3 in mind, we analyze the historic

Uniswap V3 liquidity positions to understand the impact of these
considerations.

5.1 Data Collection
We analyze Uniswap V3 data to measure and understand the na-
ture of the risks and rewards awaiting liquidity providers. The first
Uniswap V3 pool was launched in block 12’369’739. Thus, we an-
alyze the data beginning with block 12’369’739 (May 4, 2021) up
until block 14’497’033 (last block on March 31, 2022). We collect
data from the Ethereum blockchain by launching an erigon client.
More specifically, we filter the event logs for all events related to
Uniswap V3.

Our data analysis focuses on the four biggest cryptocurrencies
on Uniswap V3 in terms of total value locked: WETH, WBTC,
USDC, and DAI [10]4. Not only are the pools between these four
cryptocurrencies amongst the largest in terms of volume and total
value locked [10], but they also allow us to investigate varying
patterns between different types of pools.

With the introduction of Uniswap V3, currency pairs are clas-
sified as stable, normal or exotic depending on the relative price
volatility of the assets [1]. Stable pairs are characterized by little to
no price changes between the pair’s two cryptocurrencies, while
we can expect significant price volatility between the two assets of
a normal pair. Finally, for exotic pairs, at least one asset is not an
established cryptocurrency, and the relative price between the two
assets can fluctuate wildly. In their study of Uniswap V2 liquidity
pools, Heimbach et al. [20] highlight the differences in the returns
and risks of liquidity providers depending on the pair’s category,
i.e., the pair’s price volatility. These findings demonstrate the ne-
cessity of comparing the performance of liquidity providers based
on the price volatility of the respective asset pair rather than over
the entire protocol. Our selection of pools covers the largest pools
both with respect to trading volume and total value locked. They
make up approximately a third of the total liquidity on Uniswap.
The performance of the liquidity position in these pools is thus in-
dicative of the typical risks and returns faced by liquidity providers
on Uniswap V3. We further note that our analysis is on the level of
individual liquidity positions, as opposed to wallets or entities.

5.2 General Liquidity Pool Statistics
We commence the data analysis by extracting general statistics of
liquidity positions in the three Uniswap V3 pools with the highest
total value locked at the time of writing [10]: USDC-WETH (f=
0.3%), WBTC-WETH (f= 0.3%) and DAI-USDC (f= 0.01%). USDC-
WETH and WBTC-WETH are normal pools, as at least one of the
pools’ assets is subject to significant price movements. As opposed
to exotic pools, all pool assets are established cryptocurrencies.
DAI-USDC, on the other hand, is a stablecoin pool, as both the
pool’s tokens are pegged to the US$ and, thus, only small price
fluctuations are expected. The transaction fees levied by normal
pools tend to be higher than the transaction fees charged by stable
pools due to higher risks involved for liquidity providers stemming
from the impermanent loss. We further note that for each of the
three token pairs, multiple pools with different fee tiers exist that

4Note that wrapped assets, e.g., WETH, by design, have the same value as the underly-
ing, e.g., Ether. For our purpose, we can therefore consider them equivalent.
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(a) USDC-WETH (f= 0.3%) and WBTC-WETH (f= 0.3%)

(b) DAI-USDC (f= 0.01%)

Figure 9: Median (lighter lines) and mean (darker lines) po-
sition size over time in three Uniswap V3 pools. Observe the
large difference (factor ten) between the median and mean.

hold significant liquidity on Uniswap V3. We only plot the general
liquidity position statistics for the pools with the highest liquidity
for better visibility. In the later performance analysis (cf. Section 5.3),
we will include additional fee tiers for each token pair.

Figure 9 shows both the median and mean position sizes over
the pools’ lifetime, while Figure 10 shows the number of active
positions in each pool over time. Note that as the DAI-USDC (f=
0.01%) was only created in late 2021 following the introduction of
the new fee tier, the data set is significantly smaller (cf. Figure 12b).
When considering the position size statistics in the USDC-WETH
pool and WBTC-WETH pool (cf. Figure 9a), we notice that, apart
from an initial growth phase, both the median (lighter lines) and
the mean (darker lines) show little fluctuations over time. The me-
dian and mean position sizes are quite similar between the two
pools. We also find that the number of active liquidity positions
in the USDC-WETH pool is approximately double the number of
active positions in the WBTC-WETH pool at all times. The number
of liquidity positions in both pools’ stabilizes at a couple of thou-
sand after an initial growth period of around two months after the
pool’s creation (cf. Figure 10a). Finally, we observe that the mean
is significantly (around ten times) larger than the median in both
pools, indicating a highly unequal distribution of liquidity provider
funds.When turning to the DAI-USDC pool (cf. Figure 12b), we only
observe this trend magnified. Until February 2022, the difference

(a) USDC-WETH (f= 0.3%) and WBTC-WETH (f= 0.3%)

(b) DAI-USDC (f= 0.01%)

Figure 10: Number of active positions over time in three
Uniswap V3 pools. Note the low number of active liquidity
positions compared to the pool size for DAI-USDC.

between the median and mean liquidity position size is also around
a factor of ten but then increases to a factor of 100, indicating a
pronounced discrepancy in the distribution of liquidity. We note
that both the median and mean position sizes in the DAI-USDC
pool are significantly larger than in the other two analyzed pools.
Especially, the DAI-USDC pool thus appears to be in the hands of
large liquidity providers: underlined by the extremely small number
of active liquidity positions in the pool, as well as the presence of
single liquidity positions worth more than US$ 100’000’000. There
are only around 60 active liquidity positions in the pool (cf. Fig-
ure 10b), while the pool holds around US$ 300’000’000 after its
initial liquidity growth.

In Figure 11 we plot the mean position lifetime (darker lines), as
well as the mean time spent by a position ITM (lighter lines) for
the three analyzed pools. The mean position age increases linearly
with the pool’s lifetime at around half the rate for the three pools,
indicating that a significant proportion of liquidity positions are
active over a long period. For the two normal pairs (cf. Figure 11a),
we observe a significant difference between a position age and the
time the position was ITM, i.e., the position was active and earn-
ing fees. This difference is most pronounced for the USDC-WETH
pool. In the pool, the mean of the time a position was active is only
around half of the total position lifetime. Thus, on average, liquid-
ity positions only earn fees during half the time. This difference
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(a) USDC-WETH (f= 0.3%) and WBTC-WETH (f= 0.3%)

(b) DAI-USDC (f= 0.01%)

Figure 11: Mean time position was ITM (lighter lines) and
total position lifetime (darker lines) over time in three
Uniswap V3 pools.

is also present for the WBTC-WETH pool but less pronounced. In
the WBTC-WETH pool, liquidity positions are, on average, active
for more than two-thirds of their lifetime. We presume that this
difference stems from the relative price between the two cryptocur-
rencies, Bitcoin and Ether, having a higher correlation with each
other than with the US$ (cf. Figure 13). The less volatile relative
price makes it easier to determine the price range of a liquidity po-
sition and makes it less likely for the price to fall out of the liquidity
position’s price range. In the DAI-USDC pool, where both tokens
are pegged to the US$ and, thus, intended to have the same value
at all times, the difference between the mean of a position lifetime
and the mean of the time spent ITM is practically in-existent (cf.
Figure 11b).

In close relation, we consider the median position width, mea-
sured in bps, of liquidity positions in the three pools in Figure 12.
Note that we consider the median as a sole position with an infinite
price range that would have a too significant impact on the mean
position width. We observe that for the stable pair (cf. Figure 12b),
the median position size is tiny with 4bps and almost constant soon
after the pool’s creation. The small price movements in the pool
make it easy for liquidity providers to choose a capital-efficient,
i.e., small, price range without the risk of the pool’s price falling
out of their price range. For the two normal pairs (cf. Figure 12a),
the median width of a liquidity position is significantly larger by a

(a) USDC-WETH (f= 0.3%) and WBTC-WETH (f= 0.3%)

(b) DAI-USDC (f= 0.01%)

Figure 12:Medianpositionwidth over time in threeUniswap
V3 pools.

factor of around 1000. We further observe that while initially, the
mean position size in the USDC-WETH pool was smaller than in
the WBTC-WETH pool, the trend reverses over the pools’ lifetimes.
Thus, the market learns that it must select larger price ranges for
liquidity positions in pools where the volatility of the relative price
is larger. We further notice that, especially in the USDC-WETH
pool, we observe an increase in the median position width, indi-
cating that liquidity providers are becoming more familiar with
Uniswap V3. Within a couple of months, liquidity providers as a
whole appear to learn that they must select bigger price ranges if
they want to hold their liquidity position for longer times, as we
show in Section 4.2.

To conclude the general analysis of liquidity positions and pools
on Uniswap V3, we consider both the pool’s realized volatility as
well as its mean daily trading volume (Figure 13). The realized
volatility measures the assets historic volatility. More specifically,
the realized volatility 𝜎𝑟 is given by:√√√

365
𝑇

𝑇∑︁
𝑖=1

ln
𝑆𝑖

𝑆𝑖−1
,

where 𝑆𝑖 is the pool’s price, 𝑇 is the number of days over which
𝜎𝑟 is measured, and the factor 365 scales to volatility to one year.
Thus, for each 30 day window in our data set, we plot the realized
volatility and the mean daily trading volume.We observe only small
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(a) USDC-WETH (f=0.3%) and WBTC-WETH (f=0.3%) (b) DAI-USDC (f= 0.01%)

Figure 13: Mean daily trading volume and realized volatility for each 30 day window in three Uniswap V3 pools.

realized volatilities in the DAI-USDC (cf. Figure 13b). In the USDC-
WETH and WBTC-WETH pools, on the other hand, we observe a
significant realized volatilities reaching 140%. Notice that the real-
ized volatility in the USDC-WETH pool is significantly larger than
in theWBTC-WETH pool. While this finding might appear counter-
intuitive initially, it stems from the prices of Bitcoin and Ether being
correlated, and, therefore, leading to a less volatile relative price. In
general, the higher the pool’s price volatility, the higher the pool’s
acquired fees must be to compensate for the impermanent loss. In
Figure 13 we observe that for all three pools there is a correlation
between the realized volatility and the mean daily trading volume
over the same 30 day period. This correlation, exceeding 0.75 in
each pool, is promising for liquidity providers. However, while we
find this correlation within a pool, it is not reflected between pools.
While liquidity providers must hope for higher trading volumes in
more volatile liquidity pools, we find that the mean daily volume
in the DAI-USDC pool is largely similar to that in the significantly
more price volatile WBTC-WETH pool. Finally, it must be noted
that while higher volatility may lead to higher trading volume and
more fees collected, as seen in the previous section, the probability
that the price drops out of the liquidity position also increases with
volatility. Furthermore, volatility will also increase the probability
of larger losses due to impermanent loss. Thus, high volatility is
not per se in the interest of the liquidity provider.

5.3 Performance Statistics of Liquidity
Positions

We continue the analysis with an investigation of the performance
of individual liquidity positions in six Uniswap V3 pools: USDC-
WETH (f∈{0.05%,0.3%}), WBTC-WETH (f∈{0.05%,0.3%}) and DAI-
USDC (f∈{0.05%,0.01%}). These pools include those with the highest
volume as well as those with the highest liquidity on Uniswap
V3 [10]. Further, we include all fee tiers of a given pair if the tier
holds significant liquidity, allowing for additional comparisons.
Throughout this section, we analyze all liquidity positions with a
liquidity deposit in excess of US$ 0.0001. Smaller positions can lead

to erroneous returns due to the finite precision of ERC-20 tokens.
In Figure 14, we plot the mean daily return as well as the width

of the position’s price range for all liquidity positions that were
active for at least a day. Note that we calculate a position’s daily
return according to Equation 3 at the end of each whole day during
the position lifetime. A position’s width represents a position’s
price range: the larger the width, the larger the price range. While
vastly different patterns appear for normal pairs and stable pairs,
we observe similar patterns within a category. Figure 14a shows
the average daily return and position width of individual liquidity
positions for the normal pairs. We notice that the magnitude of the
mean daily returns can be significantly larger for small position
widths than for large positionwidths, consistent with our prediction
in Section 4.2. While the magnitude of the mean daily returns is
significantly larger for small position widths, liquidity positions
exhibit both positive and negative returns. The magnitude of the
mean daily returns tends to be smaller in the slightly less price
volatile WBTC-WETH pair pools, as well as in the respective pools
with the smaller fee. In particular, we want to point out that there
are a few liquidity positions with daily returns of around -20% in
the USDC-WETH pools. These positions were only active for a little
longer than a day in mid-May of 2021. During this time, the price
of Ether dropped by around 30% on a single day [4]. For large price
ranges the mean daily returns are very close to zero. Thus, liquidity
providers can earn significant returns with small width liquidity
positions in normal pairs, but at the same time, the risks are higher.
Choosing larger liquidity positions minimizes risks, but the mean
daily returns are unlikely to be significant.

For the stable pair a wildly different pattern appears (cf. Fig-
ure 14bz. While the magnitude of the daily returns also decreases
with the position width, they are never significantly negative. Due
to the negligible price volatility in both stable pair pools, there is
no impermanent loss, the driving factor of negative returns. Ad-
ditionally, while the mean daily returns are more significant for
liquidity positions with small price ranges, they only reach about
0.3% in the most extreme cases and are, thus, significantly less than
for normal pairs.
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(a) USDC-WETH (f∈{0.05%,0.3%}) andWBTC-WETH (f∈{0.05%,0.3%})

(b) DAI-USDC (f∈{0.05%,0.01%})

Figure 14: Mean daily returns of individual liquidity posi-
tions, depending on the position width, in six Uniswap V3
pools. Observe the significant spread in daily returns for nar-
row positions. The mean of each of the data series in Fig-
ure 14a is negative, thus, on average, liquidity providers lose
money in comparison to holding the assets and are hence
not compensated for the additional risk of providing liquid-
ity.

The difference between normal and stable pairs is as apparent
when plotting the mean daily returns of individual liquidity posi-
tions against the lifetime of a position (cf. Figure 15). While the
magnitude of the daily return tends to decrease with the lifetime
of a position, this trend is more apparent in the four normal pair
pools (cf. Figure 15a). Only liquidity position with a short lifetime
tend to experience stark positive and negative daily returns. Thus,
garnering significant profits as a liquidity provider requires active
management, indicating that providing liquidity in Uniswap V3 is
a game reserved to professional traders. In Figure 15b, we observe
that more extreme values for the mean daily return values are only
present for liquidity position’s with a shorter lifetime. These out-
liers stem from variations in the pool’s daily volume. In general

(a) USDC-WETH (f∈{0.05%,0.3%}) andWBTC-WETH (f∈{0.05%,0.3%})

(b) DAI-USDC (f∈{0.05%,0.01%})

Figure 15: Mean daily returns of individual liquidity posi-
tions as a function of the position lifetime in six Uniswap
V3 pools.

most liquidity positions exhibit similar daily returns independent
of their lifetime. As liquidity provider returns are mainly influenced
by the pool’s volume and available liquidity, daily fluctuations of
returns are less significant.

The negligible volatility of the daily returns received by liquidity
positions in the two stable pair pools is further highlighted in the
risks and return analysis of liquidity positions in Figure 16. We
plot the daily mean returns against the volatility of the returns for
each liquidity position in Figure 16 in order to analyze the risks and
returns of liquidity positions. Note that we only include positions
whose lifetime exceeds 30 days to allow for more representative
calculations of return volatility. Thus, positions with short lifetimes,
that generally experience the most extreme daily returns (cf. Fig-
ure 15), are not in the data set. Generally speaking, higher volatility
in the returns of an investment suggests greater risks. We find that
in the two stable pair pools (cf. Figure 16b), the daily volatility of the
daily returns is incredibly small. Additionally, all liquidity positions
with lifetimes exceeding 30 days exhibit mean daily returns rang-
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(a) USDC-WETH (f∈{0.05%,0.3%}) andWBTC-WETH (f∈{0.05%,0.3%})

(b) DAI-USDC (f∈{0.05%,0.01%})

Figure 16: Mean daily returns and volatility of daily returns
of individual liquidity positions for six Uniswap V3 pools.

ing from 0% to 0.04%. Thus, while liquidity position’s on Uniswap
V3 experience little to no risks of losing money, the returns are
generally small. For the four normal pair pools (cf. Figure 16a), we,
as expected, observe more significant mean daily returns also for
positions with lifetimes exceeding a month. However, this comes
at the cost of a higher volatility of the daily returns, suggesting
greater risks. Note that this is in line with our expectation, as the
risks presented to liquidity providers stem from the impermanent
loss, which is driven by price fluctuations between the pair’s two
assets. We also observe that liquidity positions in the USDC-WETH
experience more extreme volatility in their daily returns than in
the WBTC-WETH pools. This observation is in line with both the
higher fluctuation in price between US$ and Ether, as well as with
the higher fluctuations in volume (cf. Figure 13). We further no-
tice that for normal pairs liquidity positions that have the highest
volatility have the poorest performance. The opposite is true for sta-
ble pairs where the positions with the highest volatility experience
the most significant daily returns.

To further study the risks associated with providing liquidity,

(a) USDC-WETH (f∈{0.05%,0.3%}) andWBTC-WETH (f∈{0.05%,0.3%})

(b) DAI-USDC (f∈{0.05%,0.01%})

Figure 17: Mean daily returns of individual liquidity posi-
tions and 5%CVaR of daily returns for six UniswapV3 pools.

we also consider the conditional value at risk (CVaR) of the ana-
lyzed liquidity positions (cf. Figure 17). The 5% CVaR represents the
expectation value of the return of an investment in the 5% worst
cases [26]. The CVaR is one of the most frequently used risk mea-
sures, as it is not influenced by higher than average returns and
best reflects the tail-risk behavior of investments. It is therefore
sometimes referred to as the average worst case loss. We observe
that the CVaR is positive for the vast majority of liquidity positions
in the two stable pair pools (cf. Figure 17b). Thus, even in the 5%
worst cases, the expected daily return of the liquidity positions is
still positive, again suggesting a very moderate financial risk for
liquidity providers in these pools. For the four normal pair pools, a
different picture paints itself (cf. Figure 17a). Individual positions
experience CVaRs worse than -10%, exemplifying the risk related to
providing liquidity in non-stable pools. While individual positions
experience these extreme CVaRs, the 5% CVaR of most positions
is better than -5%, but these higher risks experienced by liquidity
providers do not appear to be rewarded with high returns. Less than
30% of the liquidity positions in the four pools are rewarded for
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the added risks they shoulder in comparison to providing liquidity
in the stable pools, signaling that achieving high returns is not a
simple undertaking as a Uniswap V3 liquidity provider.

We note here that while we measured low historical volatilities
in the stablecoin pools in our analysis, this must not hold true in the
future. The low volatility in stablecoin pools relies on the continued
confidence investors place in the respective stablecoins. The price
turbulences of UST in May 2022 [7] only highlight that providing
liquidity should not be viewed as a passive investment – even in
stablecoin pools. Both the market design of Uniswap V3 and the
necessary decision-making from liquidity providers may pose a
challenge to the protocol. Sudden and unexpected price changes,
such as seen in May 2022 for UST or USDT, can cause the price to
move such that little or no liquidity depth is available at the market
price, causing trading on Unsiwap V3 to cease [11, 12].

6 CONCLUSION
Providing liquidity in traditional finance markets is generally an
investment form reserved to professional traders and institutions.
The decentralized nature of the blockchain, on the other hand,
allows for many individual liquidity providers to join together to
facilitate trustless cryptocurrency exchanges on the blockchain
while earning fees. Previous works have shown that providing
liquidity on DEXes utilizing the original CPMM design can be a
profitable investment, which is accessible to retail traders and only
requires a few simple considerations from their side.

In contrast, our work shows that obtaining high returns as a
liquidity provider on Uniswap V3 is a highly complicated under-
taking requiring active management and a good know-how. The
introduction of Uniswap V3 has thus turned liquidity providing into
a playing field for sophisticated investors where retail traders must
be wary to avoid risking significant losses. Retail traders, unwilling
to risk these losses and unable to perform the resource intensive
active management, should therefore restrict themselves to simple
strategies that yield only small returns.
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