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Determinism

EDWARD A. LEE, University of California, Berkeley

This article is about deterministic models, what they are, why they are useful, and what their limitations are.
First, the article emphasizes that determinism is a property of models, not of physical systems. Whether a
model is deterministic or not depends on how one defines the inputs and behavior of the model. To define
behavior, one has to define an observer. The article compares and contrasts two classes of ways to define
an observer, one based on the notion of “state” and another that more flexibly defines the observables. The
notion of “state” is shown to be problematic and lead to nondeterminism that is avoided when the observ-
ables are defined differently. The article examines determinism in models of the physical world. In what may
surprise many readers, it shows that Newtonian physics admits nondeterminism and that quantum physics
may be interpreted as a deterministic model. Moreover, it shows that both relativity and quantum physics
undermine the notion of “state” and therefore require more flexible ways of defining observables. Finally, the
article reviews results showing that sufficiently rich sets of deterministic models are incomplete. Specifically,
nondeterminism is inescapable in any system of models rich enough to encompass Newton’s laws.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies →
Concurrent computing methodologies; • Software and its engineering → Extra-functional proper-

ties;

Additional Key Words and Phrases: Concurrency, determinism, distributed computing

ACM Reference format:

Edward A. Lee. 2021. Determinism. ACM Trans. Embed. Comput. Syst. 20, 5, Article 38 (May 2021), 34 pages.
https://doi.org/10.1145/3453652

1 INTRODUCTION

For most of my professional research career, I have sought more deterministic mechanisms for
solving various engineering problems. My focus has always been on systems that combine the
clean and neat world of computation with the messy and unpredictable physical world. Why the
obsession with deterministic mechanisms? My wife, who is an expert in stochastic models, gives
me a hard time about this obsession, observing, correctly, that deterministic models are just a
special case. Why not, then, focus on the more general set of nondeterministic models?

Today, our society relies heavily on deterministic engineered systems. The balances in our bank
accounts are a consequence of the inputs to the bank’s computing systems. The email received is
the email that was sent. The files on our computers contain the data that we put there. Our cars
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start when we push the start button. None of these is perfect, of course. Files and communication
can get corrupted and machinery can fail. But for many systems, we easily see trillions of bits of
information before encountering an error and years of reliable operation before encountering a
failure.

None of this reliability comes for free. A great deal of engineering effort has gone into mak-
ing the behavior of these systems repeatable. The underlying physics, a sea of electrons sloshing
around, for example, offers no such repeatability. We should be in awe of these systems, but we are
not because we have gotten used to their dependability. In the early days of computing, vacuum
tubes would fail frequently enough that programs had to be kept short so that they would com-
plete before a failure occurred. Computer memories were nowhere near reliable enough to replace
paper ledgers. And cars frequently would not start. But today, computers operate continuously
for months and years, performing billions of operations per second without error. When errors do
occur, a second layer kicks in, using error-correcting codes or redundant systems to self-correct.
As a result, paper ledgers have vanished. And cars start.

There are many reasons for this dependability, but for the purposes of this article, I would like to
focus on my obsession: the principle of determinism. I am not talking about the philosophical view
that everything that happens is an inevitable consequence of pre-existing conditions, although
that concept is related. I am instead talking about an engineering principle, where a model defines
exactly one correct behavior for a system in response to its inputs. Like the philosophical concept
of determinism, the engineering version has many fine points, subtleties, and consequences that
are subject to debate. My purpose in this article is to address these fine points. I will start informally,
but I will not shy away from subtleties.

1.1 A Simple Deterministic Model

Consider a logic gate, an AND gate for example. Is it deterministic? This is, of course, a trick
question. If what we mean by “an AND gate” is a piece of silicon, then the answer to this question
depends on whether the underlying physics of electrons sloshing through semiconductor atoms
buffeted by thermal noise under the influence of electric fields is deterministic. I will consider later
in the article the question of whether modern physics can answer that question, but suffice it to
say, for now, that there is a different interpretation of the question that makes it much easier to
answer.

If what we mean by “an AND gate” is a model, an abstraction, that, given two Boolean inputs,
produces the output “true” if the two Boolean inputs are “true” and otherwise produces the
output “false,” then this AND gate is deterministic. It defines exactly one correct behavior for
each pattern of inputs. This model, however, leaves a great deal unsaid. When must the inputs
be provided? When is the output provided? How are “true” and “false” to be represented in the
physical world? Who or what is the observer of the output? What can that observer perceive
about the AND gate? Determinism does not require that all aspects of a system be prescribed. It
only requires that what we construe as “behavior” be prescribed.

Implicitly, I have assumed that what we mean by “inputs” is a pair of Boolean values from the set
{true, false} and what we mean by “behavior” is producing a Boolean output chosen from the same
set. This is a mathematical abstraction, not a physical artifact. If an observer is able to perceive, for
example, the temperature of the AND gate, then this could be construed as part of its behavior, and
the AND gate is no longer deterministic. Many possible temperatures are consistent with correct
behavior of the AND gate. The abstraction also says nothing about the time at which these inputs
are presented and the output is produced, so if the timing is observable, then again the AND gate
is no longer deterministic. Whether something is deterministic or not, therefore, depends on what
can be observed about it and whether we consider these observations part of the “behavior.”
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1.2 Engineering Models vs. Scientific Models

A mathematical abstraction is a model. What makes this model useful? In my book, Plato and the

Nerd [38], I observe that the purpose of a “scientific model” is to emulate a physical system. For an
“engineering model,” the purpose of the physical system is to emulate the model. The mathematical
abstraction of the AND gate that I have given is a rather poor model of electrons sloshing in silicon,
so it is not likely to be used as a scientific model. The model is valuable because we are able to
construct silicon that behaves like the model, not because it accurately describes what electrons
do as they move through silicon atoms. Hence, it is more useful as an engineering model than as
a scientific model.

In this article, I will focus primarily on deterministic engineering models, and hence, whether
the physical world is in fact deterministic is not nearly as important as whether we can coerce the
physical world to behave like a deterministic model. The reality today is that humanity has figured
out how to get silicon electronics to behave like deterministic models with astonishing fidelity.

Of course, no model is perfect, and no physical realization is perfect. The famous quote from
George Box, “all models are wrong, but some are useful” [6], applies to scientific models, where it is
incumbent on the model to match the physical world. The mirror image, “all physical realizations
are wrong, but some are useful” [43], applies to engineering models, where it is incumbent on the
physical world to match the model.

In this article, determinism is a property of models, not of physical realizations. I will analyze
why this property is so valuable, and why it is worth a great deal of engineering effort to build
physical systems that emulate deterministic models. I will argue that using deterministic models
is not at odds with dealing with uncertainty nor with building fault-tolerant systems. On the con-
trary, it makes these things easier. I will discuss the relationship between deterministic models and
determinism in the physical world. And I will review results that show that determinism is incom-
plete in that sets of deterministic models that are rich enough to model the physical world do not
contain their own limit points. From a practical perspective, this means that nondeterminism is
unavoidable in a broad class of models.

1.3 Terminology

Determinism in philosophy is the principle that every action is a consequence of its precondi-
tions and that fixed rules uniquely determine these consequences. The closely related principle of
“causation” (or “causality”) is that the preconditions and the rules cause the consequences. Nonde-
terminism, under this principle, can be thought of as uncaused action. Many people find it difficult
to accept that there can be uncaused action and will go to great lengths to find some cause when
none is obvious, resorting eventually to God or some other supernatural cause when all else fails.

Causation is an explanation of why something happens. Instead of focusing on why, we can
focus on what happens. In this view, it is the uniqueness of the consequences that is the core
of the concept of determinism, not causation. There is only one possible consequence of each
precondition. This uniqueness is the property I focus on in this article.

Nondeterminism is closely related to the concept of randomness, but there are important distinc-
tions. In vernacular use, a random event is an unpredictable one. But even deterministic processes
can be unpredictable, so under this view, randomness does not imply nondeterminism. Nondeter-
ministic processes are always unpredictable, however, so nondeterminism does imply randomness
in this vernacular understanding of the word.

There is a more technical interpretation to the word “random,” however, which seeks to quantify
the likelihood of various possible outcomes with probabilities. Nondeterminism, in contrast, is
about possibilities, not probabilities. It says nothing about likelihoods.
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This more technical interpretation of randomness leads to a deeper split with nondeterminism,
making these concepts almost orthogonal. Consider what we mean by “likelihood” and “prob-
ability.” In the classical “frequentist” interpretation of these concepts, a probability is a predic-
tion of the proportion of repeated experiments that will turn out some way. For example, what
fraction of die tosses will produce snake eyes? But no repeat of any experiment begins with the
same preconditions as the previous experiment, so this frequentist interpretation has no need for
nondeterminsim.

Some experiments cannot be repeated, and yet we consider them random and assign them prob-
abilities. For example, what is the probability of a major earthquake in San Francisco in the next
30 years? This probability has no valid frequentist interpretation. In the “Bayesian” interpretation,
a probability is a measure of how much we know about the outcomes, not a measure of how fre-
quently they occur [38, Chapter 11]. Once again, randomness has no need for nondeterminism. If
we know little about some deterministic system, we can consider its outcomes to be random and
assign them probabilities. Whether the underlying system is nondeterministic becomes irrelevant.

1.4 The Practical Value of Determinism

Let me begin by pointing out that our engineering toolkits are full of extremely useful deter-
ministic models. Differential equations are deterministic (with some important exceptions that I
will discuss below). Most computer programming languages, if we exclude their mechanisms for
concurrency, are deterministic. Synchronous digital logic, the most widely used electronic circuit
design paradigm, is deterministic. Instruction set architectures are mostly deterministic. TCP/IP,
the central protocol in the Internet, is deterministic in the sense that a stream of bits in yields the
same stream of bits out, even though packets may be dropped (even deliberately to shape traffic) or
arrive out of order. Computer memory is deterministic, even when it is built on unreliable compo-
nents, as demonstrated, for example, by the RAID project (redundant arrays of inexpensive disks)
[59]. Today, it is even possible to build deterministic cloud services on top of farms of unreliable
servers.

All of the above are deterministic models. The underlying physical realization is almost certainly
not deterministic, and considerable effort and cost has gone into building physical systems that
are sufficiently faithful to these deterministic models. Perfect faithfulness is not achievable (“all
physical realizations are wrong . . . ”). But we would not be putting in all that effort if determinism
were not quite valuable.

There are many reasons determinism is valuable. Here are a few:

(1) Repeatability. Every engineer tests a design while developing it. Such testing is valuable
only under the assumption that if a system works once, it will work again in largely the
same way. The behavior is repeatable given the same inputs. This principle is systematized
in test-driven design, where collections of regression tests have well-defined correct be-
haviors. When a change is made to a design, the regression tests will reveal whether the
change has resulted in some unexpected behavior.

(2) Consensus. When two agents come to a conclusion, it is often valuable that the conclusions
be the same. Your bank and you usually agree on your bank balance. You both keep track
of that balance using deterministic computations. Given the same input information, both
will produce the same results.

(3) Predictability. If behaviors in response to certain inputs are predictable, then they do not
need to be discovered through testing or by surprise after deployment. As I will explain
below, determinism does not assure predictability, but nondeterminism assures unpre-
dictability. Some deterministic models are predictable.
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(4) Fault detection. A deterministic model gives an unambiguous definition of “correct behav-
ior.” This enables fault detection. Any behavior that deviates from the correct behavior is
faulty behavior, meaning that some assumption has not been satisfied. An AND gate, for
example, will not behave in conformance with the model if the temperature is too high. A
cyclic-redundancy check (CRC) check on a value read from memory (something com-
puted using a deterministic algorithm) reveals whether the memory has experienced a
fault that caused a bit to flip. Both of these faults would be harder to detect without a
deterministic model defining correct behavior.

(5) Simplicity. In a deterministic design, one input implies one behavior. In a nondeterminis-
tic design, it is easy to get an exponentially growing number of allowed behaviors. This
makes comprehensive testing much more challenging. It can also compromise the ability
to analyze a model using, for example, formal methods.

(6) Unsurprising behavior. Often, we want engineered systems to be boring. They should
not surprise us with unexpected behaviors. When a computer programmer gets unex-
pected behaviors from a multithreaded program, for example, it can be extremely disrup-
tive, costly, and difficult to fix [33].

(7) Composability. When building large systems out of smaller components, having a clear
understanding of the possible behaviors of those smaller components becomes essential.
Deterministic models of those components makes this far easier.

When engineers are forced to move beyond these deterministic mechanisms, building correct
designs becomes far more difficult. Unfortunately, many of today’s most popular programming
frameworks supporting parallel and distributed computing make it quite difficult to achieve deter-
ministic behaviors.

1.5 The Practical Value of Nondeterminism

None of what I have said implies that nondeterminism has no value. Nondeterministic models can
also be valuable. Here are a few reasons:

(1) Abstraction. A nondeterministic model may provide a much simpler abstraction of a de-
terministic model [12]. Note that this does not contradict Property 5 above. The nondeter-
ministic model is simpler, but if it is a sound abstraction, the number of behaviors allowed
by the model cannot possibly be smaller than those of the model it abstracts. A smaller
model may be easier to understand. It may also be easier to formally analyze, as long as
the formal analysis does not require exhaustively exploring all possible behaviors.

(2) Uncertainty. Nondeterministic models are useful as scientific models of systems where our
knowledge of their behavior is incomplete. For example, modeling a human operator of a
car is probably not a reasonable task for deterministic modeling. Such a model of a human
operator, however, is almost certainly a scientific model, not an engineering model.

(3) Deferred design decisions. For engineering models, nondeterminism can be a useful way
to capture deferred design decisions. Deferred design decisions represent a different form
of uncertainty. It is uncertainty about the model, not uncertainty about what is being
modeled.

(4) Security. Many techniques for securing software systems rely on good random number
generators. Pseudo-random number generators are deterministic, a weakness that opens
a vulnerability. Seeding a psuedo-random number generator with the result of a nonde-
terministic process can help.

(5) Don’t care. A model may have many acceptable behaviors in response to a given input.
Serverless architectures in the Internet, for example, are useful because computations in
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response to inputs can be mapped to any available server. It is irrelevant to correctness in
what order and where these computations are performed.

(6) Surprising behavior. We don’t always want engineered systems to be boring. An auto-
mated musical accompanist, for example, might be enriched by unpredictable behavior.
Any artificial intelligence attempting to exhibit human-like behavior will also need to at
least appear to be nondeterministic (see my book [39, Chapter 10] for a discussion of the
connection between creativity and nondeterminism).

Notice that valid uses of determinism and nondeterminism are quite different from one an-
other, which suggests that engineers should consciously choose between them. This is rarely easy.
For example, when writing multithreaded or distributed software, almost all available languages,
frameworks, and middleware are nondeterministic by default. Achieving determinism is left to the
designer and is sometimes impossibly difficult [33, 47].

Probabilistic, stochastic, or random models (I will treat these words as synonyms) are also useful,
but as I pointed out in Section 1.3, the concept represented by these words is largely orthogonal to
nondeterminism. In computer security, for example, random numbers are usually generated using
a deterministic algorithm that ensures a desirable empirical probability distribution on observa-
tions. A nondeterministic source of random numbers may, in fact, be hopelessly inadequate for
computer security without some characterization of its probability distribution. In the Bayesian
interpretation of probability, it is irrelevant whether the thing being observed is deterministic.
What is relevant is whether the observation can be anticipated given prior knowledge.

1.6 The Cost of Determinism

Building physical systems that behave like deterministic models usually comes at a price. A syn-
chronous digital circuit, for example, has to be clocked slowly enough to provide comfortable mar-
gins to accommodate delay variability due to manufacturing tolerances and temperature. These
margins are a cost in performance. Some power-users of computers have discovered that they
can often “overclock” their CPU without introducing too many errors. This may be acceptable for
gaming, for example, but it would probably not be wise for a bank to overclock their CPUs.

For distributed systems, determinism comes at the cost of latency [77]. For applications where
latency is a key performance metric, nondeterministic solutions may be a better choice. For exam-
ple, some distributed applications choose to use UDP rather than TCP for network communication.
The UDP protocol is simpler and faster than TCP, but it sacrifices the guarantee of eventual in-
order delivery of messages. If occasional packet losses are acceptable for a particular application,
then this may be a reasonable choice.

As with all engineering, there are tradeoffs. To evaluate these tradeoffs, it is helpful to have a
deeper understanding of what determinism really is. We look at that next.

2 WHAT IS DETERMINISM?

John Earman, in his Primer on Determinism, states that “determinism is a doctrine about the nature
of the world” and concludes that “a real understanding of determinism cannot be achieved without
simultaneously constructing a comprehensive philosophy of science” [16, p. 21]. If instead of a
“doctrine about the nature of the world” we view determinism as a property of models, then no
such philosophy is needed. We can focus instead on the usefulness of the concept of determinism.

As a property of models, determinism is easy to define:

A model is deterministic if given all the inputs that are provided to the model, the
model defines exactly one possible behavior.
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In other words, a model is deterministic if it is not possible for it to react in two or more ways
to the same inputs.1 Only one reaction is possible in the model. More precisely, only one reaction
is correct; any other reaction is not one given by the model. In this definition, I have italicized
words that must be defined within the modeling paradigm to complete the definition, specifically,
“inputs” and “behavior.”

For example, if the behavior of a particle is its position x (t ) in a Euclidean space as a function
of time t , where both time and space are continuums, and if the input F (t ) is a force applied to the
particle with mass m at each instant t , then Newton’s second law,

F (t ) =m
d2

dt2
x (t ), (1)

is a deterministic model (mostly, see Section 5).
The same particle, however, may have an equally valid nondeterministic model. For the same

definitions of behavior and input, the statement “The particle accelerates in the direction of the net
force” provides a nondeterministic model. It admits many more behaviors than the deterministic
model. This latter model is a sound abstraction because the behavior of the deterministic model is
among the behaviors of the nondeterministic one.

When considering a physical particle, the thing-in-itself rather than its model,2 then Earman’s
hesitation comes to the foreground. A definitive answer to whether the actual particle is deter-
ministic may never be possible. Any discussion of the determinism of a particle is necessarily a
discussion of some model, not of the thing-in-itself, even if that fact goes unsaid. Some models of
the particle are deterministic and some are not. I will address the physics of determinism in Section
5. But first, let us address some of the subtleties with models before we complicate the picture with
the thing-in-itself.

3 BEHAVIOR, STATE, AND OBSERVATION

When determining whether a model is deterministic, we need to define “behavior.” Many models
tie behavior to the notion of “state.” Newtonian physics, for example, does this by defining a time
continuum and modeling the state of a system as positions and momentums at a shared “instant”
in time. “Behavior” can then be defined as the evolution of this state in the time continuum in re-
sponse to the inputs, which are forces. Modern physics complicates this simple picture (see Section
5), but the Newtonian models nevertheless remain useful.

3.1 The Notion of State

In their classic book on automata theory, Hopcroft and Ullman define “state” as follows:

The state of the system summarizes the information concerning past inputs that is
needed to determine the behavior of the system on subsequent inputs. [24, p. 13]

The state is all the information about its past that can affect its future behavior. In other words,
the state of a system is the information about the past such that any additional information tells us
nothing about its future behavior. This definition requires defining “behavior,” but it also requires
a notion of “past” and “future” as well as the boundary between these, the “present.” This notion
turns out to be problematic for very fundamental reasons. It is problematic in modern physics,
but also in practical realizations of parallel, distributed, and cyber-physical systems [34]. These

1For a nice formalization of this concept, see Edwards [17].
2The philosopher Immanuel Kant made the distinction between the world as it is, what he called the thing-in-itself (das

Ding an sich in German), and the phenomenal world, or the world as it appears to us.
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systems have no well-defined “present” separating past and future. The notion of state, therefore,
useful as it is, sits on shaky foundations.

In computing, automata theory is built around the notion of state (or equivalent notions working
with sequences of symbols). Variants of automata theory use either a Newtonian time continuum
or a discrete, countable model of time, both of which provide a “present” that separates past from
future. Automata theories share with Newtonian physics the idea that time advances uniformly
throughout the system and that there is a shared notion of an “instant” of time, a “present,” at
which the system is in some state.

In automata theory, unlike Newtonian physics, even if time is a continuum, the state evolves
in discrete jumps. At an instant, the state of the system changes from some value s to some other
value s ′. Again, “behavior” can be defined as the evolution of this state in time. When the system
is distributed or concurrent, where it consists of multiple interacting components, possibly spread
out over space, nondeterminism proves to be a useful way to model the uncertainty about the
order in which state changes occur in the distinct components.

3.2 Input-Output vs. State-Trajectory Behavior

An alternative way to define behavior is to introduce the notion of “outputs,” data or symbols
that some observer interprets as the behavior of the system in response to some input. Instead of
state-trajectory behavior, we have input-output behavior. The relationship between input-output
behavior and state-trajectory behavior is fascinating, subtle, and complex. The essential question
is, what can an observer observe? The possible observations are the “output” of the system. But this
is true even if we define “behavior” to be a state trajectory. In that case, we have implicitly defined
an observer that can observe the state of the system at an instant in time. This definition will
require us to define “an instant in time,” which, as we will see, becomes difficult for a distributed
system.

Consider automata theory, where a state transition system may be endowed an explicit notion
of inputs and outputs. Inputs trigger state transitions and outputs result from state transitions.
A transition system evolves as a sequence of state transitions, and hence, both the inputs and the
outputs are sequences of symbols from some alphabet. A sequence of symbols forms a “sentence,”
and the set of all sentences that are possible defines a “language.” In an input-output interpretation
of behavior, a deterministic model is one for which, given any input sentence, there is only one
possible output sentence.

The fact that inputs and outputs are defined in automata theory to be sequences of symbols is
important. An “observer” only ever sees sequences of symbols. These sequences cause no end of
difficulties with modeling concurrent systems, where the order in which symbols occur may not
be relevant or even well defined. Starting in the 1970s, Robin Milner and Tony Hoare pioneered
methods for formally modeling such systems (see Winskel [73, Chapter 14] for a nice summary of
these results). I will illustrate these difficulties with some key observations due to Milner.

In 1980, Milner published a series of lecture notes giving an elegant formalism that he called
a Calculus of Communicating Systems (CCS) [54]. This formalism made it abundantly clear
that looking only at the sentences of inputs and outputs is insufficient. For a simple illustration
of this, consider a distributed system consisting of three components C1,C2, and C3 running on
three computers, illustrated in Figure 1. C1 sends a message to each of the other two to initiate
the computation. In response, the other two perform some deterministic computation and output
a sequence of results (a sentence). Suppose C2 always outputs AB and C3 always outputs CD. Is
the overall system deterministic?

As described, this system has no input, so, to be deterministic, it should have exactly one “be-
havior.” If by “behavior” we mean a single output sentence, as Milner does, then we are forced
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Fig. 1. Three-component system that is either deterministic or not depending on how you define the
observer.

to combine the output sentences produced by C2 and C3. How should we combine them? If we
define the “observer” to be some entity that simply observes the symbols A, B, C , and D as they
are produced, then that observer will see some arbitrary interleaving of the two sentences AB and
CD. There are six such interleavings, as shown at the upper right in the figure. Hence, the model
is nondeterministic.

Arguably, the nondeterminism that arises here is a side effect of our insistence that an observer
can only see a single output sequence. Indeed, Milner found this sort of nondeterminism unsat-
isfying and introduced a notion that he called “confluence.” In his formalism, as long C2 and C3

cannot interfere with each other’s ability to produce their output, this system is deemed “conflu-
ent,” presented as a useful replacement for the concept of determinism.

There is another solution, however, which does not require replacing the notion of determinism.
Instead, we can change what we mean by “behavior” by changing what an observer sees. If, instead
of a single output sequence the behavior is defined to be a pair of output sequences, then the model
immediately becomes deterministic, as shown at the lower right in the figure. The one and only
behavior is (AB,CD), a pair of sentences, each containing a sequence of two symbols.

Redefining “behavior” may seem like a sleight of hand, a trick. It is not. Any definition of behav-
ior depends on a notion of an “observer,” and fundamentally, for any system, different observers
see different things. Let me make this crystal clear with a trivial example. Consider the following
C program:

1 int main(int argc, char* argv[]) {
2 printf("Hello World.\n");
3 }

In this program deterministic? If the “observer” is a human sitting at a computer screen, then for
this program to be deterministic, that observer should be able to see only exactly one possible
observation from running this program. Is that the case? What color will the characters “Hello
World” be rendered in? How long will it take before the observer sees “Hello World”? Neither of
these observable properties are specified by the program, so if we include these properties in the
notion of “behavior,” then the program is nondeterministic. Almost certainly, however, this is not
what we intended. If we carefully define “observer” and restrict that observer to observing the
sequence of symbols produced by the program, then the program becomes deterministic.

3.3 Alternative Conceptions of Behavior

Returning to our example with C1,C2, and C3, a different notion of deterministic programs was
introduced by Gilles Kahn in 1974, a class of models that are now called Kahn Process Net-

works (KPNs) [26]. These are closely related to dataflow models [40, 41], which share with them a
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different notion of “observer” from Milner’s that leads to different conclusions about determinism.
A KPN is a network of processes that send messages to each other along defined channels, where
each channel is assumed to preserve the order of the messages and deliver them reliably (like
TCP). Kahn gave an elegant construction using the mathematics of partial orders to give condi-
tions on the processes such that the overall behavior of the program is deterministic [26]. Kahn and
MacQueen later showed that a simple constraint on the processes in the network, “blocking reads,”
is sufficient to ensure determinism [27].

The definition of “behavior” here, however, is not the sentences of Milner. Kahn defined behav-
ior to be a collection of (possibly infinite) sequences of messages, each recording the messages
traversed on one channel. “Behavior” in a KPN, therefore, is a tuple of possibly infinite sequences.
Under the KPN model,C1,C2, andC3 together form a deterministic system. No notion of confluence
is needed.

Kahn networks also do not require any notion of state. Each process can be usefully modeled
as a state machine, but there is no need to ever talk about a global state, some combination of the
states of all the processes at some instant in time. The approach Kahn took toward defining the
semantics of programs without appealing to a notion of state can be generalized to many other
kinds of concurrent systems [32], as done, for example, in the tagged signal model [42].

An issue with Kahn networks is that coordinating decision making in a distributed system can
become difficult [47]. There is no notion of “the state of the system,” so writing code like “if the
state of the system is X do Y ” becomes challenging.

A number of alternative concurrency models have emerged that preserve determinism and rein-
troduce a semantic notion of state without having to appeal to confluence. One such alternative
concurrency model is embodied in synchronous-reactive languages [5]. These languages introduce
the notion of a global “clock” that ticks discretely, much like that found in synchronous digital logic
design. At each tick of this now conceptual (rather than physical) clock, many computations are
performed, possibly in parallel, until the entire system settles to a well-defined state. With certain
constraints on the component computations and on their scheduling [19], the resulting state is
a unique function of the inputs. The resulting model can be conceptualized as lying somewhere
between Milner’s transition systems and Kahn’s asynchronous process networks. During the com-
putation, at a tick, the behavior is more like a Kahn network, where data precedences constrain the
order in which things happen, but no notion of a single global state trajectory is needed and com-
putations can proceed in parallel and asynchronously. At the conclusion of a tick, things settle to a
well-defined state, enabling a higher-level state-trajectory model that treats all the computation at
a tick as a single atomic state transition. These models are deterministic as long as the observer is
constrained to observe the state only at the conclusion of each tick. The execution of synchronous-
reactive languages may be thought of as “punctuated chaos,” where periods of chaotic, parallel,
asynchronous computation are marked by isolated points of stable, well-defined state.

3.4 Time

Although synchronous-reactive languages have “clocks,” they do not really have a notion of time.
For cyber-physical systems (CPSs), which combine computation and networking with physical
components [34], some notion of time becomes essential [35]. It is not necessary (nor is it phys-
ically possible) to insist on the Newtonian notion, where time is a continuum with well-defined
instants t that are shared by all components in the system. Instead, leveraging the punctuated
chaos of synchronous-reactive languages, we can assign a semantic measure of time elapsed be-
tween ticks [68, 72]. This makes it possible for models to combine Newtonian models of physical
components with computational models, thereby offering a rigorous approach to CPS design that
does not sacrifice determinism [13].
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We can make an even bigger commitment to a notion of time by explicitly timestamping events,
as done in discrete-event systems [31]. In such models, the concept of a global “tick” is replaced by
timestamped messages with the constraint that every component processes messages in timestamp
order. With an additional constraint that messages with identical timestamps be processed in a
well-defined order, the model becomes deterministic. This is the principle behind the recently
introduced reactor model [46] as realized in the Lingua Franca language [48]. This language is the
current manifestation of my obsession with determinism. Semantically, such discrete-event models
can be viewed as a generalization of synchronous-reactive models [44] and have even been called
“sparse synchronous” models by Edwards and Hui [18].

3.5 Observers

Another major issue that emerges from Milner’s calculus is the tension between state transitions
and output sentences. Which are observed? It is easy to construct an automaton that makes nonde-
terministic state transitions and yet produces a deterministic output in response to inputs. Should
this automaton be deemed deterministic or not? This tension has prompted some researchers to
attempt to codify this distinction, sometimes using two distinct words, “determinate” and “deter-
ministic” (see, e.g., von Hanxleden et al. [71]). The word “determinate” is meant to capture the
idea that observable outputs are uniquely defined by the inputs, whereas the word “deterministic”
attempts to capture the idea that there is a unique way in which the outputs are determined. Using
this distinction, our constructed automaton (the one that makes nondeterministic state transitions
and yet produces a deterministic output) is determinate but not deterministic.3

However, this distinction is specious. An automaton is a model, not an implementation. An
implementation might be realized by a computer program, in which case, the automaton is a model
of the behavior of that program. The program itself is a model of the computations to be performed
by one or more instruction set architectures (ISAs) communicating over some network fabric
using some protocols. The ISA and the network protocols are themselves models of a physical
system with electrons sloshing around. At which level should we determine whether the system is
deterministic? How many words for determinism will we need to cover all these levels of models?
If we are clear about what we mean by an “observer,” then no such distinction is needed and
one word is sufficient. Determinism becomes a property of the combination of the model and the
observer.

Another context in which this tension comes to the foreground is with Alonzo Church’s lambda
calculus [8], a model of computation in which “lambda expressions” are subjected to syntactic
rewriting following a set of rules. The Church-Rosser theorem shows that if such an expression
can be reduced to the point where none of the rewriting rules can be applied anymore, then the
same final expression results regardless of the order in which the rewriting rules are applied [9].
This model of computation can be construed as nondeterministic if the observer can see the inter-
mediate expressions or as deterministic if only the final expression is visible.

The notion of an observer, it turns out, has its own subtleties. Should an observer be passive and
objective, or can the observer interact with the system? This distinction turns out to be important.

3A similar distinction is given by Wisniewski, et al. [74], who define “strong” and “weak” determinism in terms of Petri nets
augmented with inputs and outputs. They make a distinction between “stable markings” (ones where no transitions are
enabled, given the inputs) and “unstable markings” (which can be viewed as transitory markings toward stable markings).
A “weakly deterministic” Petri net is one where for each possible stable marking and input, there is exactly one successor
stable marking, and a “strongly deterministic” Petri net is one where for any marking and input, there is exactly one
successor marking. Another similar distinction is given by Khomenko et al. [28], who define “output-determinacy” as a
relaxation of determinacy.
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In computer security, for example, any discussion of the security of the system requires a threat
model that is explicit about the capabilities of an attacker. It is important whether the attacker can
interact with the system or is restricted to passively observing it.

Milner’s own definition of determinism exposes such subtleties in the concept of an “observer.”
Milner’s definition of determinism depends on a relation between automata that Milner called
“bisimulation.” It is beyond the scope of this article to explain bisimulation, but suffice it to say
that this concept depends on an observer that is not just passive and objective, but rather can inter-
act with the system being observed.4 In 1980, David Park found a gap in Milner’s prior and simpler
notion of “simulation,” in which a passive and objective observer automaton emulates the behavior
of an observed automaton [58]. Park noticed that even if two automata simulate each other, they
can exhibit significant differences in behavior. These differences are not observable by any passive,
objective observer, but if the observer can interact with the observed automaton, providing inputs
that depend on its observations, then the differences become visible. Park’s observation led Milner
to develop the notion of “bisimulation” (and the closely related notion of “observational equiv-
alence”), an interactive form of simulation that ensures that two automata are indistinguishable
even through interaction. He then based his notion of determinism on bisimulation [55].5

4 DETERMINISM VS. PREDICTABILITY

Determinism does not imply predictability. For a model to be predictable, we must be able to
anticipate its behavior by examining the model rather than by just watching what it does. Once
again, we must be careful to define “behavior.” No computer program is predictable, for example,
if “behavior” includes generating heat. The computer program alone is not sufficient to anticipate
how much heat will be generated by executing the program.

Turing machines are deterministic models. The “input” to a Turing machine is a binary bit se-
quence, which Turing described as the initial sequence of marks on a tape. The “behavior” can be
defined to be a final bit sequence, the final sequence of marks on the tape when the machine halts,
or a special result, often called “bottom” and written with the symbol ⊥, that indicates failure to
halt. A Turing machine, therefore, is a model whose operation computes a function that maps an
input bit sequence to either an output bit sequence or ⊥.

A Turing machine is also deterministic to an observer that can observe the sequence of oper-
ations that lead to this final output, but this stronger form of determinism is less important to
the notion of “computation.” In fact, one of the most interesting things about the foundational
theory of computation is that many different mechanisms, including some nondeterministic ones,
can be used to compute the same set of functions. A human using pencil and paper and follow-
ing well-defined rules, given enough paper and time, can compute the same set of functions. Your
laptop, which uses low-level operations that are quite different from those of a Turing machine
and involve no tape, given enough time and memory, can also compute the same set of functions.
Church’s lambda calculus, which has expressiveness equivalent to Turing machines, is determin-
istic in the weaker sense, where “behavior” is the final irreducible expression, but its mechanisms
for finding that expression need not be deterministic. Reduction rules may be applied in any order.
The low-level mechanisms are not as important as the function that is computed, so we will stick
with the definition of “behavior” that restricts the observer to observe the final binary result.

4See my book [39, Chapter 12] for an in-depth discussion of the distinction between observation and interaction. That
chapter includes a gentle introduction to the concept of bisimulation.
5Sangiorgi [67] gives a nice overview of the historical development of this idea. He notes that essentially the same concept
of bisimulation had also been developed in the fields of philosophical logic and set theory.
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The question now becomes, is the deterministic behavior of a Turing machine predictable? Alan
Turing showed that it is not. He showed that there is no mechanism, no systematic procedure that
can predict, for all Turing machines, whether an execution will halt for a particular input [70]. This
result carries over to all the similarly expressive mechanisms, including Church’s lambda calculus,
a human with paper and pencil, and your laptop. This result decisively decouples determinism from
predictability. Determinism does not imply predictability.

Turing machines and lambda calculus underlie modern imperative and functional programming
languages, respectively. Programmers, therefore, face the possibility that they will not be able to
predict whether their programs will terminate. Usually, however, a programmer needs assurances
that the program will terminate (e.g., a program that converts a text file into a PDF file) or will not
terminate (e.g., a web server or an operating system). Fortunately, most programs are predictable
in this sense, even if, in theory, it is impossible for all programs to be predictable in this sense.

Many computer programs are unpredictable in a more informal sense. In this more informal
sense, the question is, by examining the program but not executing it, can we anticipate its behav-
ior? Some programs are designed to be unpredictable in exactly this sense. Pseudo-random number
generators, for example, fall in this category. You cannot tell from looking at the program what
numbers it will generate. You must execute the program instead. Machine-learning algorithms
turn out also to be unpredictable in this sense. Cellular automata, a class of deterministic compu-
tational machines that are also unpredictable in this sense, are capable of surprising and complex
behaviors, so complex as to prompt some thinkers to conclude that they underlie all of physics [75].

Unpredictable deterministic models also arise in Newtonian physics. Nonlinear differential
equation models, such as those modeling the thermodynamics of weather, exhibit behaviors that
are so unpredictable that they are called “chaotic” [49]. A chaotic model is one where arbitrarily
small perturbations in the inputs or the initial conditions have arbitrarily large effects in the future.

Deterministic chaotic systems are, not even in principle, predictable. Lewis and MacGregor, in
2006, proposed a thought experiment involving two spheres colliding with each other within a con-
tained space [45]. They calculate the precision with which the initial conditions must be known in
order to predict the behavior after a certain number of collisions. They then assume that the initial
positions of the spheres are to be determined optically and derive the wavelength of light that
will achieve the required precision. They then show that a single photon of such light would have
“more energy than is currently posited for the entire universe in order to resolve the initial state of
the system with precision sufficient to predict its behavior after just 35 collisions” [45, p. 10–11].

The “system” that Lewis and MacGregor analyze is, however, a model, not a physical system. The
question we should be asking, therefore, is whether the model is predictable. The model, given by
Newton’s laws with discrete collisions, admits no closed-form solution, and therefore would have
to be solved numerically to predict its behavior. A similar analysis could be done to determine the
arithmetic precision and computational load required to accurately predict the behavior after 35
collisions. I have not done this analysis, but I suspect it would show that this is equally impossible.

4.1 Murphy’s Law and Faults

An argument that I hear frequently against deterministic models goes something like this: In the
real world, things will go wrong. Nothing is really predictable. Even deterministic models will be
violated in practice, so why bother with deterministic models? Why not, instead, assume every-
thing is random and design your system to tolerate this randomness?

This argument, if carried too far, suggests we should not bother with the reliable in-order packet
delivery of TCP, the linchpin of the Internet. We should not bother with CRC checks in computer
memories. We should not bother with synchronous digital logic design, and instead use circuits
that may or may not produce expected results. But we do bother with all these things. Why?
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Today, computer memories have replaced ledgers in finance and law. Digital signatures have
become an acceptable way to finalize legal contracts. Stock trades execute without human
intervention or paper records. None of these would be possible without deterministic models and
our ability to build physical systems that are highly faithful to these models. Electronic circuits
perform billions of arithmetic operations per second and go for years without errors.

I repeat the core principles because they are so important. Determinism is a property of models,
not of physical systems. An engineering model is a specification of how a physical system should

behave, not a model of how the physical system does behave (the latter is a scientific model). When
you have a model that defines how a system should behave, then you get, for free, the notion of a
“fault.” A fault is a behavior that deviates from the specification.

The existence of faults does not undermine the value of deterministic models. In fact, the very
notion of a fault is strengthened by deterministic models because they define more clearly what
behavior a physical system should have. Detecting faults, therefore, is easier. A CRC, for example,
detects at least some violations of a simple deterministic model of a computer memory. This enables
fault-tolerant design, where the system reacts in predictable ways to faults.

Every realization of an engineering model can exhibit faults. When we successfully build a
physical system that reliably behaves like a model, it does so only under certain assumptions.
No computer will correctly execute a program if it overheats, is crushed, or is submerged in salt
water. The model is faithfully emulated only under the assumption that none of these things has
happened.

Making the assumptions clear also has value. The Ptides model [77] for deterministic distributed
execution of discrete-event programs, for example, which is realized in Google Spanner [11] and
Lingua Franca [48], assumes a bound on clock synchronization error and a bound on network
latency to achieve extremely efficient distributed and fault-tolerant coordination of program com-
ponents. Violations of these assumptions will occur in practice, but in a well-designed system, they
will be rare. Moreover, such violations are detectable because they manifest as software compo-
nents seeing events out of timestamp order. A deterministic model, together with clearly stated and
quantified assumptions under which a physical realization emulates the model, enables efficient
designs that can react in predictable ways to faults. Hence, despite Murphy’s Law, deterministic
models are useful, even in the face of unpredictable failures.

5 DETERMINISM IN PHYSICS

The question of whether the physical world is deterministic has been controversial for a long time.
In the early 1800s, Pierre-Simon Laplace argued that if someone (a “great intellect,” later known as
“Laplace’s demon”) were to know the precise location and velocity of every particle in the universe,
then the past and future locations and velocities for each particle would be completely determined
and could be calculated from the laws of classical mechanics [30]. Is this true?

In 2008, David Wolpert proved that Laplace’s demon cannot exist [76]. No such calculation is
possible. Wolpert’s proof relies on the observation that such a demon, were it to exist, would have
to exist in the very physical world that it predicts. This results in a self-referentiality that yields
contradictions, not unlike Turing’s undecidability and Gödel’s incompleteness theorems.

But Laplace’s demon is about prediction, not just determinism. We already know that determin-
ism does not imply predictability. Even if prediction is known to be impossible, we cannot conclude
that the world is nondeterministic. We will look at the question of whether Newtonian physics, the
state of the art when Laplace lived, is a deterministic model. You may be surprised by the answer.

More recently than Laplace, Karl Popper, high priest of scientific positivism, also insists on a
deterministic universe:
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One sometimes hears it said that the movements of the planets obey strict laws,
whilst the fall of a die is fortuitous, or subject to chance. In my view the difference
lies in the fact that we have so far been able to predict the movement of the planets
successfully, but not the individual results of throwing dice. In order to deduce
predictions one needs laws and initial conditions; if no suitable laws are available
or if the initial conditions cannot be ascertained, the scientific way of predicting
breaks down. In throwing dice, what we lack is, clearly, sufficient knowledge of
initial conditions. With sufficiently precise measurements of initial conditions it
would be possible to make predictions in this case also. [61, p. 198]

This quotation reflects a conventional wisdom, which dictates that Newton’s laws provide
a deterministic model of the universe. Also conventional wisdom is that quantum physics
dashed that determinism. Neither of these is strictly true. A concise summary of the ways that
determinism in these physics models have been interpreted is given by Hoefer [23]. A more
in-depth study is given by Earman’s Primer on Determinism [16]. Here, I will relate some of these
interpretations to the above discussion of determinism in engineering models and give my own
perspective on the subject.

5.1 Nondeterminism in Newtonian Physics

A (rather controversial) example of nondeterminism in Newton’s laws is due to the philosopher
of science John Norton [57].6 Norton considers a point mass precariously balanced on top of a
smooth frictionless dome. Norton shows that, without violating any of Newton’s laws, the mass
can spontaneously begin sliding down the side of the dome in an arbitrary direction at an arbi-
trary time without anything causing it to start sliding. His argument is carefully constructed and
surprised me when I first heard it. I was sure his argument was wrong, but I finally concluded that
my certainty was based on circular reasoning.

Newton’s second law, given in Equation (1), states that at any time instant, the force imposed
on an object equals its mass times its acceleration. If there is no force, the acceleration must be
zero. If the acceleration is zero, then the velocity is not changing. Hence, it would seem that if
the mass is not moving, balanced on the top of the dome, and no force is applied, then it should
remain still, with velocity equal to zero. But Norton points out that it is possible for the mass to
start sliding down the dome at any arbitrary time T without violating this law and without any
force initiating the slide. At the instant T , the mass will have velocity zero and acceleration zero,
so it is not moving. But at any time greater thanT , say atT + ϵ , no matter how small ϵ is, the mass
may be no longer centered on the top of the dome. It will now be sitting on a slope, which means
that gravity will exert a nonzero force in the downhill direction, and the mass will have a nonzero
acceleration.

Specifically, Norton proposes a dome shape where the dome drops by a distance h = (2/3д)r 3/2,
where r is the distance along the surface of the dome from the center of the dome and д is the force
of gravity (see Figure 2).7 There is nothing particularly special about this shape; it just makes the
math work out simply. With this choice, the force on the mass tangent to the dome, as a function
of the distance r from the center of the dome, is F (r ) =

√
r . With this function, Equation (1) admits

many solutions. In particular, if we assume unit mass m = 1, then the following is a solution for

6Another example with similar properties is given by Dhar [14].
7Gareth Davies points out in his blog that this is a rather odd specification of the dome shape and that the extent of the
dome has to be limited to r ≤ д2. See https://blog.gruffdavies.com/2017/12/24/newtonian-physics-is-deterministic-sorry-
norton/.
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Fig. 2. Norton’s dome (from http://www.pitt.edu/∼jdnorton/Goodies/Dome/index.html).

any T :

r (t ) =

{
(1/144) (t −T )4 t ≥ T
0 otherwise.

(2)

At the instant t = T , the mass is not moving, the net force on the mass is zero, and the mass is
not accelerating. At any time larger than T , the mass is moving, the net force is not zero, and the
mass is accelerating down the dome.T can have any value without violating Newton’s second law.
Equation (1) holds at every instant t .

There are many subtleties around Norton’s example. First, it may be helpful to realize that there
is no first instant at which the mass accelerates. Instead, the time t = T is the last instant at which
the mass is not accelerating. At all instants greater thanT , there is a nonzero net downward force,
gravity on a slope, so the mass accelerates. Zinkernagel [78] claims that this property is the key
flaw that would allow us to declare Norton’s dome to not be a “Newtonian system.” He says the
force lacks a “first cause.” But requiring a first cause would force us to reject many other innocu-
ous systems that do not exhibit nondeterminism, including many reasonable models where force
appears gradually [20].

Malament [50] offers a fascinating analysis of the mathematics behind Norton’s dome. First he
addresses a preconception that was part of what made me initially skeptical about Norton’s claim.
I had always assumed that Newton’s second law (Equation (1)) would have a unique solution for
any input force function F that could be generated by a reasonable Newtonian system. Norton’s
system seems reasonable in this sense because the force is just Newtonian gravity and the dome is
a reasonably simple geometric shape. But Malament points out that uniqueness is not guaranteed
if F is not continuously differentiable. Norton’s function is not continuously differentiable at r = 0,
and Equation (1) admits many solutions. We could restrict “Newtonian Systems” to include only
forces that are continuously differentiable.8 This is not satisfactory to me, however. We would have
to rule out a large number of shapes, including shapes that do not lead to nondeterminism, such
as a table with an edge where a mass slides off the edge.

Another possible objection to Norton’s dome is that such a shape could never be constructed
perfectly. This argument is specious, however, because every shape that we can describe mathe-
matically will have flaws when constructed in the physical world. This objection would effectively
eviscerate Newtonian physics.

Yet another approach to rejecting Norton’s claim is to impose constraints on the solutions to
Equation (1) rather than force function. For example, Davies suggests that higher-order derivatives
of the solution need to exist and be continuous for the solution to be a reasonable model of physical
behavior.9 The family of solutions given by Equation (2) does not meet this requirement. However,
this too is not satisfactory to me. Again, it would rule out a mass sliding off the edge of a table.

8A weaker but sufficient constraint would be to require the force to be locally Lipschitz.
9https://blog.gruffdavies.com/2017/12/24/newtonian-physics-is-deterministic-sorry-norton/.
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Moreover, this amounts to saying something like “the model is valid if we choose from among its
behaviors the one that seems reasonable.”

It seems that to regain determinism, we need to augment Newtonian physics with additional
axioms that are not derivable from the core concepts. Newton could have given us a fourth law
of motion going something like this: “a mass can only have one possible motion that conforms
with the previous three laws.” This would assume away nondeterminism in order to obtain a
deterministic model of the physical world.

Fletcher [20] points out, however, that even this restriction has several possible versions, and
any choice between these seems arbitrary. For example, we could declare Norton’s dome to not be
a “Newtonian system” altogether, or we could declare it to not be a “Newtonian system” only when
the mass starts or ends at the peak of the dome. If the initial position of the mass is somewhere else
on the dome, Newton’s second law gives us a deterministic model. What if it starts somewhere
else on the dome with some momentum toward the peak and crosses the peak? At the moment of
crossing, does the system suddenly and instantaneously cease to be a Newtonian system?

Are Newton’s other laws violated when the mass spontaneously starts sliding? Newton’s first
law states that an object will remain at rest or in uniform motion in a straight line unless acted
upon by an external force. It may seem that having the mass spontaneously start to move violates
this law, but actually it does not, at least under one reasonable interpretation of this law. Since
an external force may vary in time, this first law needs also to be interpreted as a statement that
holds at each instant of time. Under this interpretation, the first law becomes a special case of the
second law where F (t ) = 0.

There is another interpretation of Newton’s first law, however, that restores determinism for this
example, but this interpretation requires more than Newtonian physics and is ultimately based on
circular reasoning. The first law can be interpreted to mean that there can be no uncaused changes
in momentum, where the cause is some external effect. If the mass slides off the dome as I have
described, then there must be some such external effect causing this. That effect must be something
other than a Newtonian force, however, because any force would lead to a trajectory different from
Equation (2), which satisfies the second law. So what could that required external non-force effect
be? The force of will of a conscious mind? The force of God? There is nothing in Newtonian physics
that qualifies.

One could take this absence of a model for such an external non-force as an argument that the
mass will not move. But the absence of a model cannot be construed as evidence. According to
Norton, there is no need for such an external non-force for the mass to slide down the side of the
dome, so there is no need for a model for this external non-force. Newton’s laws are still satisfied.
It is equally valid to demand a model for whatever keeps the mass perched on the dome. What
non-force is that?

It will still disturb many readers that the mass can start moving with no provocation. Newton’s
laws are also satisfied by a mass that behaves itself and remains quietly perched at the top of the
dome for all eternity. Isn’t it reasonable to assume it will do that? An empirical approach would
actually find this interpretation unreasonable, since any practical realization of Norton’s dome will
result in the mass sliding off the peak. The apparent reasonableness of this interpretation is due
to a distaste for uncaused action, i.e., a distaste for nondeterminism. It is not due to empirical
evidence and indeed flies in the face of empirical evidence. Hence, the argument that the mass will
remain at the top of the dome is circular. It is not supported by the mathematics of Newton’s laws
alone and instead depends on the assumption that nothing happens without provocation. In other
words, it concludes determinism based on an assumption of determinism.

The presupposition that every behavior has a cause is a difficult one to give up. In 1913, Bertrand
Russell challenged the scientific world to give it up:
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All philosophers, of every school, imagine that causation is one of the fundamental
axioms or postulates of science, yet, oddly enough, in advanced sciences such as
gravitational astronomy, the word “cause” never occurs. . . . The law of causality,
I believe, like much that passes muster among philosophers, is a relic of a bygone
age, surviving, like the monarchy, only because it is erroneously supposed to do
no harm. [66]

Objective discussion of causality is difficult because the notion of causality lurks in every aspect
of natural language.10 In my recent book, The Coevolution [39], I examine this presupposition of
causality in much more depth, leveraging the arguments of Judea Pearl in [60] (who argues that
reasoning about causality requires subjective involvement) and evolutionary biologists (who argue
that the notion of causality may have arisen because of its evolutionary survival value rather than
because it is a fact about the world). But for our purposes here, it is sufficient to simply observe
that Newton’s laws do not imply causality.

What about Newton’s third law, which states that every action has an equal and opposite re-
action? When gravity exerts a force on a mass, causing the mass to fall, the mass exerts an equal
and opposite force on the earth, causing the earth to rise. Since the mass also gains momentum in
some lateral direction, the earth must acquire an equal and opposite lateral momentum. The mass
of the earth, however, is so much larger than the masses in Norton’s example that, to the earth, the
force exerted on it is negligible. At all times t > T , the nonzero net force downward and laterally
on the mass will be balanced by an equal and opposite nonzero net force pulling the earth up and
laterally. The effect of that force will not be measurable, but it is there, so the third law is also not
violated.

Newtonian physics is often assumed to be time reversible, but reversing time on Norton’s exam-
ple has curious effects. Consider the scenario where the mass starts on the outskirts of the dome
and we push it with just enough force that it reaches the top of the dome and stops. If we push
too hard, it will go over the top of the dome. If we don’t push hard enough, it will not reach the
top of the dome and will fall back down. But if we push it with the Goldilocks force, just right, it
will stop at the top, stay there for an arbitrary amount of time, and then spontaneously slide down
the dome again sometime in the future. As soon as the mass perches at the top, it’s history is lost.
Nothing in its state reveals when the mass arrived at the top, thereby foiling Laplace s demon.

For this scenario to work, Norton points out that the shape of the dome is important. If the dome
is a perfect hemisphere, then with the Goldilocks force, it will take infinite time for the mass to
reach the top of the dome. It will keep slowing down as it approaches the top, but it will never
actually reach the top. But there are many other dome shapes where the mass reaches the top
in finite time. Norton’s example, where the dome drops by a distance h = (2/3д)r 3/2, is one such
dome shape.

In conclusion, either Newtonian physics admits nondeterminism or Newtonian physics needs
to be augmented with additional axioms that preclude nondeterminism. As I will show in Section
6, however, any set of additional axioms that preclude nondeterminism will also preclude many
useful models of physical phenomena.

5.2 Metastable States

It turns out that many systems are vulnerable to similarly uncaused action under Newtonian
physics. When the mass is perched on the top of the dome, it is in a metastable state. A metastable

10A nice collection of essays on the deep influences of the notion of causality on language is found in Copley and Martin
[10].
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state is marginally stable, where infinitesimal disruptions throw the system out of its precarious
state. Norton’s mass is vulnerable to falling out of its metastable state with no provocation.

Electronic circuits, particularly ones at the boundary between the continuous physical world
and the discrete world of digital electronics, have long been known to be vulnerable to lingering
for unbounded periods of time in a metastable state [29, 51, 53]. So the problem is not limited
to cute examples of masses on domes. It is a fundamental problem at the boundary between the
discrete, computational world of computers and the continuous physical world.

A particular kind of metastable system is a bistable system, one that has exactly two stable states
and can persist for an indeterminate period of time in a metastable state between the two stable
states. A digital circuit can be thought of as a piece of electronics that wants to be in one of two
states, and in principle, situations where it can linger indefinitely between these two states are
unavoidable.

Designers of such circuits go to great lengths to make sure that the probability of lingering gets
extremely small as time advances. Consequently, it is rare for circuits to persist in a metastable state
for very long. Such situations can occur, however, but are difficult to reproduce in the lab. They
have occasionally been implicated in otherwise inexplicable crashes of computers. Is the basic
operation of such circuits deterministic? If not, then any electronic implementation of a Turing
machine, a deterministic model, is actually nondeterministic.

Bistable behavior has also been observed by biologists in nerve axons. Under certain circum-
stances, these axons can linger for an indefinite period of time before settling into one of two
resting potentials [15]. It is likely that such metastability plays a role in brain function.

Building a physical realization of Norton’s dome is impossible because no physical dome is
perfectly smooth and frictionless and no mass is a point mass. Nevertheless, it is common to de-
liberately build systems that come as close as possible to such metastability. Sensitive instruments
depend on metastable states. The instrument hovers in its (nearly) metastable state until the slight-
est nudge from the thing being measured pushes it off in one direction or the other. The circuit
that reads the contents of a DRAM, a commonly used computer memory, for example, makes use
of such metastability to read a tiny stored charge.

5.3 Relativity

The special and general theories of relativity are mostly deterministic in a similar sense that New-
tonian physics is mostly deterministic. There are only a few corner cases, specifically singularities,
that result in many possible futures given a specific past. The event horizon of black holes presents
such singularities, but these are unobservable in the rest of space time, and hence arguably pose
no problem to the determinism of the theory. A conceivable class of singularities, called “naked
singularities,” however, have no event horizon and become observable. In 1969, Sir Roger Penrose
posited that such naked singularities do not exist in the universe, a principle called “cosmic cen-
sorship.” If this principle holds, then general relativity adds no sources of nondeterminism over
and above any already present in classical physics.

Nevertheless, there is one aspect in which relativity complicates the notion of a deterministic
model of physics. Specifically, it undermines the notion of “the state of the system,” as used by
Milner and Newton, and consequently, we can no longer talk about determinism in terms of the
evolution of the state of the system in time. In relativity, there is no “instant in time.” This Newto-
nian concept is replaced by a Cauchy surface, a hypersurface in four-dimensional space time. But
the Cauchy surface is different for each observer, so two distinct observers can disagree about the
state of the system.

The difficulty can be illustrated with a simple example, illustrated in Figure 3. Consider a dis-
tributed system with two physically separated subsystems, one of which makes an instantaneous
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Fig. 3. Model of a distributed system that relies on a notion of “system state.”

transition from state A to B, and the other of which makes a transition fromC to D. Under a New-
tonian model of time, one of the following transition sequences must be the true one, in the sense
that it is actually what happens when the system transitions from (A,C ) to (B,D):

(A,C ) → (B,C ) → (B,D)
(A,C ) → (A,D) → (B,D)
(A,C ) → (B,D)

However, according to relativity, it is possible for none of these to be “true” in all frames of ref-
erence. The order of physically separated events may depend on the observer. It is not that two
different observers just see things delayed in different ways; it is that the true order for the different
observers is different. There is no ground truth, in the sense that we cannot make a statement like
“at time t , the system was in state (B,C ).” That statement can be true for one observer and false
for another.

This problematic notion of time (and hence state) follows easily from the fact that the speed of
light is the same for all observers. Consider a simple thought experiment, a variant of the famous
Einstein Train example. Suppose that Randy is seated at the center of a rapidly moving train car,
and Jane is standing on a platform at a station where the train does not stop. Suppose that just
at the instant that Randy passes Jane, he hits a button that emits a brief pulse of bright light. In
Randy’s frame of reference, the light will hit the front and back ends of the train car at the same
time. However, in Jane’s frame of reference, the light will hit the back of the train car before it hits
the front. In Randy’s frame of reference, the light has to travel the same distance in either direction,
and since the speed of light is constant, it will strike both ends of the car simultaneously. But in
Jane’s frame of reference, the distance the light has to travel to the back of the train is less because
the back of the train is moving toward where the light was emitted while the light is traveling
toward the back of the train. Hence, the two events of light striking the ends of the train are
simultaneous for Randy but not for Jane.

Note this example is not just a cute toy that is only realizable if you have trains that can travel
close to the speed of light. The phenomenon is called the Sagnac effect, and it is used in ring
laser gyroscopes, a key component of many inertial guidance systems, including many used in
commercial aircraft. The Sagnac effect also has to be taken into account in the design of GPS
because of the rotation of the earth.

Instead of an evolving state in time, a relativistic system is a collection of events where, given
a pair of events, one may precede the other. This is analogous to the contrast between Milner’s
transition systems (analogous to classical physics) and Kahn’s precedence order constraints (anal-
ogous to relativity). Of course, if one event causes another, then relativity is careful to ensure that
all observers see the one before the other, so nothing magical happens. To ensure this consistency,
relativity posits that the effects of any event cannot propagate through space faster than the speed
of light.
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Interestingly, a similar dichotomy exists in the philosophical study of time, dubbed an “A-Series”
(classical) model of time or a “B-Series” model by Gale [21]. An A-Series model of time is built on
the tensed notions of past, present, and future, while a B-Series model of time is built on a partial
order, a “precedes” relation between events. For example, the statement “I will complete this paper
today” is an A-Series statement and will have a different meaning if uttered tomorrow. In contrast,
“Completion of this paper precedes the 2021 New Year” is a tenseless B-Series statement. It has the
same meaning whenever it is uttered. Relativity requires a B-Series model of time.

The illusion of state is a powerful illusion, however, because no single observer can observe a
system to be in two states at once. For example, no observer of the example of Figure 3 will see both
(B,C ) and (A,D). This becomes important when considering quantum models, which I do next.

5.4 Quantum Physics

It is common to assume that quantum physics immediately undermines any notion of the world
being deterministic, but the story is more subtle. There are many interpretations, not all of which
lead to nondeterminism.

First, under quantum mechanics, the evolution of the particle’s wave function is deterministic,
following the Schrödinger equation. If we redefine “behavior” to be the evolution of the wave
function in time, rather than position and momentum, then the model is deterministic. The fact
that the Schrödinger equation is deterministic prompted Stephen Hawking to colorfully proclaim
that determinism can be salvaged:

At first, it seemed that these hopes for a complete determinism would be dashed
by the discovery early in the 20th century that events like the decay of radioac-
tive atoms seemed to take place at random. It was as if God was playing dice, in
Einstein’s phrase. But science snatched victory from the jaws of defeat by mov-
ing the goal posts and redefining what is meant by a complete knowledge of the
universe. . . . In quantum theory, it turns out one doesn’t need to know both the
positions and the velocities [of the particles]. [22]

It is enough to know how the wave function evolves in time.
But the wave function is not directly observable. It cannot be measured by instruments. If deter-

ministic behavior has no observer, does it lose its value? If, on the other hand, we define “behavior”
in terms of measurable quantities, such as position and momentum, then the quantum model be-
comes nondeterministic, albeit in a subtle way. The wave function is commonly interpreted as
giving the probabilities of the various possible inherently random measurement outcomes.

However, what could “probability” mean here? It turns out that it cannot be the usual notion
of probability that you probably learned in an undergraduate class. Quantum probability is not an
indicator of the relative frequency of various outcomes when performing repeated experiments.
The so-called “no cloning theorem” in quantum mechanics says that such repeated experiments
are impossible! The frequentist interpretation of probability has to be replaced by the Bayesian
notion, which gives a different meaning to the word “probability” (see my book [38, Chapter 11]
for a discussion of these two interpretations). In the Bayesian interpretation, a probability is a
measure of what is unknown. Quantum probability is even stronger; it is a measure of what is
unknowable.

It turns out that the mechanics of probability theory do not depend much on which interpre-
tation you adopt. The math is the same. Interestingly, much of modern probability theory was
developed by Laplace, who was convinced the world was completely deterministic. There is no
contradiction here, however, because Laplace was a Bayesian. His probabilities measure uncer-
tainty, or lack of knowledge, not intrinsic randomness.
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Even if we take “behavior” to be the evolution of the wave function in time, despite our in-
ability to measure it, subtleties remain. The Schrödinger equation gives the evolution of the wave
function in classical Newtonian time, not relativistic time. Hence, even if we could measure the
wave function, it would become possible for two distinct observers to see two different wave func-
tion evolutions for the same physical system! If the system includes metastable components, these
distinct evolutions could be quite different indeed.

The role of an observer has always been important in quantum physics, albeit not in this rel-
ativistic sense. In what is now called the Copenhagen interpretation, originally proposed in the
years 1925 to 1927 by Niels Bohr and Werner Heisenberg, the state of a system continues to be
defined by probabilities until an external observer observes the state, and only at that point do the
probabilities influence the outcome. Prior to being observed, all possible outcomes represented by
the probabilities continue to remain possible. This requires an “observer” who is somehow separate
from the system and measures the position of the particle. A “collapse” of the wave function occurs
at the instant that a “measurement” is made, converting possibilities into certitude. This interpre-
tation leaves unspecified what a “measurement” or “observation” is and typically puts the mea-
surement apparatus outside the domain of quantum mechanics. This has led to sometimes bizarre
interpretations, for example, that conscious minds play a central role, which presumably means
that the physical world didn’t exist or played by different rules before conscious minds formed.

The Copenhagen interpretation, however, is firmly rooted in an insistence on imposing a notion
of “state” on the system. The outcome of a measurement is taken as a definitive answer, a fact about
the system. A more fully “quantum” interpretation would continue to model the system, even after
measurement, using a wave function.

In the 1950s, the physicist Hugh Everett III dispensed with the distinct observer, instead bundling
observer and observed under a single wave function that evolves deterministically under the
Schrödinger equation. The measurement apparatus and measured system entangle and evolve to-
gether in a single wave function. This view is a straightforward, simple, and direct interpretation of
quantum mechanics until one insists on the same sort of certitude that one gets from the collapse
of the wave function posited by the Copenhagen interpretation. With this insistence, the theory
gets rather extravagant.

Consider a particle, say, an electron, moving through space. In classical physics, at each instant
t , it has a definite position and momentum. In quantum physics, it has a wave function. If we
measure its position, say, by putting a phosphorescent screen in its way, then the position of the
electron will be revealed by a flash on the screen. Under the Copenhagen interpretation, at the time
the electron hits the screen, its position is drawn randomly from a probability density function
that puts weights equal to their likelihood on all regions of possible positions. Under Everett’s
interpretation, the photon, the screen, and the human observer become entangled and a single
wave function covering all of them and continues to evolve deterministically.

But, under Everett’s interpretation, where is the electron? Physicists seem to continue to insist
that it must be somewhere, that it has “state,” which leads to the most bizarre part of Everett’s
thesis. In his thesis, the electron is everywhere that its wave function permits it to be, but now
in an uncountably infinite number of split-off universes. In each such universe, the electron is at
one of the infinitely many possible positions. Each of these universes is somehow weighted by the
probability dictated by the wave function.11 The insistence on state leads to uncountably many
universes being spawned anytime there is an interaction between components of a system.

11This is a rather mysterious part of the Many Worlds interpretation because the wave function defines a probability density

for position, not a probability, so each of the uncountably many universes would have to have weight equal to zero. This
stretches the notion of “existence” to the breaking point.
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Because of the proliferation of universes, Everett’s thesis is often called the “Many Worlds”
interpretation of quantum mechanics. It means that every time there is an interaction between an
observer and a subject, the universe splits. Depending on what is being measured, it could split in
two or into an infinite number of possibilities. Since interactions are occurring all the time, a wildly
extravagant proliferation of universes occurs at every instant in time. The model is deterministic,
but the split universes cannot interact with one another, and hence, from the perspective of any
entity in any one of those universes, the outcome of the experiment appears to be random.

Many physicists consider this consequence of Everett’s thesis to be a reductio ad absurdum proof
of the invalidity of the thesis. But others, including many highly respected physicists, accept the
thesis as the best available explanation of quantum mechanics (see Becker [3] for a very readable
overview of the alternative explanations).

There is, however, a simpler interpretation that is consistent with Everett’s core idea that there
is a single wave function that continues to evolve deterministically. The simpler interpretation
rejects the notion that there is a ground truth about the state of a system at an instant in time. The
electron is never at a definitive location. Despite seeing the flash of light, even a human observer
is mistaken to interpret this as definitive evidence of a true location. No experimental apparatus
is perfect, and it takes a great deal of effort to build an experimental apparatus that delivers even
reasonable confidence, much less certainty. Moreover, no human perceptual system, which sees
the flash, is perfect, and no brain has perfect memory. It is simply wrong to conclude that the flash
is an indicator of a definitive truth. It is no more than compelling evidence of a high likelihood.
This simpler interpretation has no need for a proliferation of universes. In exchange, it sacrifices
certainty. Specifically, it sacrifices the notion of “state.”

Einstein famously resisted aspects of quantum physics, a theory he helped to build, insisting
that the theory was incomplete. He spent much of his later career searching for the “hidden vari-
ables,” hitherto unknown aspects of the state of a physical system that would reconcile quantum
theory with the principles of locality implied by relativity (that no event’s consequences can prop-
agate at faster than the speed of light). The conflict posed by quantum theory is between locality
and a principle that some physicists call “reality.” Here, “reality” is the principle that objects have
real properties that determine the outcome of measurements, i.e., that they have what I have been
calling a “state.” Locality is the principle that reality at one location in space is not influenced
instantaneously by measurements performed at a distant location (or more specifically, that influ-
ences propagate no faster than the speed of light).

In 1964, John Stewart Bell proved that quantum theory is incompatible with the principles of
reality and locality [4]. That is, if quantum theory is a faithful scientific model of the physical
world, something that is well verified experimentally, then one of the two principles must be false.
Most physicists, including Bell himself, seem to prefer to sacrifice locality over reality.

However, this makes quantum theory incompatible with relativity, which requires locality.
Relativity, however, does not require reality in this sense. In fact, as I argued in the previous
section, relativity is inconsistent with reality in this sense. Relativity shows that a physical system,
at least one that is spread out over space, cannot have “state” that, at an “instant” (a boundary
between the past and the future), determines all of its properties. Any notion of state is dependent
on the observer. The so-called “relational interpretation” of quantum mechanics, first attributed
to the theoretical physicist Carlo Rovelli, takes this perspective. The state of a quantum system is
a relation between the observer and the system. There is no notion of state that is independent of
an observer (see Rovelli [64, 65] for readable explanations of this approach).

In summary, the world is not predictable under either classical or modern physics. Is it de-
terministic? That depends on what model we use, and all deterministic models have logical prob-
lems. A deterministic Newtonian model requires a presupposition of determinism. A deterministic
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Fig. 4. Collision of ideal billiard balls on a frictionless surface.

relativistic model requires giving up the notion of state. A deterministic quantum model requires
either an extravagant proliferation of universes or a similar forsaking of the notion of state. I will
argue next that these logical problems are inevitable. Any set of deterministic models rich enough
to say interesting things about the world is demonstrably incomplete, so these logical problems
are unavoidable.

6 INCOMPLETENESS OF DETERMINISM

In 2016, I published a paper on the limits of modeling for cyber-physical systems in which I showed
a sense in which determinism is incomplete [37] (see also my book [38, Chapter 10]). I review
that result here. The short summary is that any set of deterministic models that is rich enough to
encompass Newton’s laws and also admits discrete behaviors does not contain its own limit points.
Thus, any approach to modeling that relies on such a set of deterministic models has corner cases
that exhibit nondeterminism. Nondeterminism, therefore, is inescapable in physical models.

6.1 Nondeterministic Collisions

Consider a model of the collisions of two billiard balls, as shown in Figure 4. Suppose that we
model a collision as a discrete event, where the collision occurs in an instant, having no duration
in time. Assume that the balls are ideally elastic, meaning that no kinetic energy is lost when they
collide. In this case, Newton’s laws require that both energy and momentum be conserved; the
total momentum and energy must be the same after the collision as before.

Letv1 andv ′1 be the velocity of the first ball before and after the collision, respectively. Letv2 and
v ′2 similarly represent the velocity of the second ball before and after the collision. Conservation
of momentum requires

m1v
′
1 +m2v

′
2 =m1v1 +m2v2, (3)

where m1 and m2 are the masses of the two balls, respectively. Conservation of kinetic energy
requires

m1 (v ′1)2

2
+
m2 (v ′2)2

2
=
m1 (v1)2

2
+
m2 (v2)2

2
.

Assuming we know the starting speedsv1 andv2 and the masses, then we have two equations and
two unknowns, v ′1 and v ′2. This is a quadratic problem with two solutions.
Solution 1: Ignore the collision:

v ′1 = v1, v
′
2 = v2.
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Fig. 5. Collision of three billiard balls on a frictionless surface.

Solution 2:

v ′1 =
v1 (m1 −m2) + 2m2v2

m1 +m2

v ′2 =
v2 (m2 −m1) + 2m1v1

m1 +m2
.

Note that solution 1 looks like tunneling, where the balls pass through one another without affect-
ing each other, as a neutrino might. In solution 2, ifm1 =m2, then the two masses simply exchange
velocities, as suggested in Figure 4. If we rule out solution 1, then the model is deterministic.

Now consider a more elaborate scenario, shown in Figure 5. Two (ideal) billiard balls approach
a third stationary ball from opposite sides on a frictionless surface and collide with the stationary
ball simultaneously. How should they react? If we consider only conservation of momentum and
energy, we still have two equations, but now there are three unknowns.

At the time of the collision, there are two collisions. We could attempt to treat these as a pair of
two-ball collisions, each of which has two possible outcomes. If we reject the tunneling solutions,
then it would seem that only one outcome remains for each of the two collisions. But it is not
obvious how to combine the two non-tunneling outcomes.

A first (naive) solution, using what is known as Newton’s hypothesis, just superimposes the
resulting momentums of the two non-tunneling outcomes. If the balls all have the same mass,
then the left ball will transfer its momentum to the middle ball, the right ball will also transfer its
momentum to the middle ball, and the equal and opposite momentums will cancel. All balls stop.
Momentum is conserved, but not energy. This solution is shown at the top of Figure 6. Since there
is no mechanism for energy dissipation in this model, this resolution is not satisfactory.

An alternative solution, using what is known in the literature as Poisson’s hypothesis, intro-
duces a form of superdense time [36]. At the time of the collision, the kinetic energy of the balls is
instantly converted to potential energy by compressing the middle ball. Then, without time elaps-
ing, in a second microstep, the potential energy is reconverted to kinetic energy by the middle
ball expanding. But how should this ball apportion the kinetic energy to the two outer balls? An
intuitively appealing solution is shown at the bottom of Figure 6, which assumes the masses are
equal and the two balls bounce off the center ball and end up with equal and opposite velocities.
In general, however, then there are many solutions that conserve both momentum and energy!
We seem to have no basis for picking one solution over another, so the model appears to become
intrinsically nondeterministic.

This thought experiment asked us to consider that the two collisions occur simultaneously. But,
as we saw in the previous section, we have to choose an observer before simultaneity has any
meaning. One observer may see the balls colliding simultaneously, another may see the left col-
lision occurring first, and a third may see the right collision occurring first. It seems that any
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Fig. 6. Newton’s hypothesis vs. Poisson’s hypothesis.

solution we come up with needs to have some sort of consistency across the experiences of these
three observers.

Let’s consider what happens when we treat the collisions as occurring in some order, but without
any time elapsing between the collisions (this again relies on a superdense model of time and can
be seen as a limiting case where an infinitesimal amount of time elapses between the collisions). As
shown in Figure 7, when the collisions occur, we arbitrarily pick either the left collision or the right
one, temporarily ignoring the other one. Rejecting the tunneling solution, we get a deterministic
exchange of momentum. Without time elapsing, we find ourself in state (b) in the figure, at which
point we must handle the second collision. Again we get a deterministic solution, leaving us in
state (c). Again, without time elapsing, we handle a third collision, which leaves us in state (d).
After time elapses, we find ourselves in state (e).

I first studied this problem while developing the hybrid system simulator in Ptolemy II [7]. I
experimented with different masses and with handling the collisions in different orders. I kept
seeing plots like those shown in Figure 8. I was convinced that these plots should have been the
same, that the order in which the software handled the collisions should not matter. Time did
not elapse between collisions, so according to Newton’s laws, the state of the system should not
change. I spent weeks looking for the bug in the software before I finally realized that there was
no bug in the software. More than one final state conserves both momentum and energy.

Inevitably, when I present this example, someone asks me how the “real world” behaves in
this situation. This is a difficult question. One of the consequences of quantum mechanics is the
Heisenberg uncertainty principle, which states that we cannot simultaneously know the position
and momentum of an object to arbitrary precision. But discrete modeling of these collisions de-
pends on modeling position and momentum precisely.

To many readers, it may seem odd to be invoking quantum mechanics on macro-scale physics
problems, where Newtonian mechanics usually works just fine. But when the order of events affects
the outcome, we find ourselves inevitably at quantum scales. The order of events can change with
arbitrarily small differences in time or space.
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Fig. 7. One of two orderings for handling collisions.

Fig. 8. If the masses are different, the behavior depends on which collision is handled first.

Both relativity and quantum physics expose difficulties with this mix of time and space contin-
uums with discrete events. Perhaps it is the mix that is problematic and we should instead reject
either continuums or discreteness. Rejecting continuums amounts to accepting a hypothesis some-
times called “digital physics,” a position that I challenge in my book [38, Chapter 8].
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Fig. 9. Non-simultaneous collisions.

Rejecting discreteness is a bit harder to debunk, but it has the same flavor as the assumptions
that Malament and Fletcher point out are required to rule out Norton’s dome as a valid Newtonian
system [20, 50]. Discrete collisions are singularities, not unlike the singularity that makes Nor-
ton’s dome result in forces that are not continuously differentiable. But ruling them out simply
to preserve determinism seems rather arbitrary. More disturbingly, I have developed an example
(a flyback diode circuit) [37] that shows that rejecting discreteness has the consequence of also
having to reject causality.

Nevertheless, for the billiard balls example, rejecting discreteness is relatively easy. Using only
classical mechanics, we can model the balls as stiff springs, yielding a model where there are
no discontinuous changes in momentum. I have shown that this makes the model deterministic,
but chaotic [37]. Hence, arbitrarily small perturbations in initial conditions lead to arbitrarily
large changes in final state. Combine this observation with quantum uncertainty, and the result is
indistinguishable from nondeterminism in any practical sense.

6.2 Incompleteness

The three-billiard-ball example has the odd property that if the collisions are not simultaneous,
then no matter how small the time difference between collisions is, the resulting behavior is deter-
ministic. As the time between collisions approaches zero, as long as it remains nonzero, we have a
deterministic model. But in the limit, the model becomes nondeterministic. This suggests that the
set of deterministic models is incomplete, in that it does not contain its own limit points.

I review here a construction from my previous paper [37] of such an incomplete set of determin-
istic models. Consider the set M of models describing one-dimensional motion of N = 3 ideal elas-
tic balls subject to Newton’s second law, where collisions are handled with impulsive forces, and
all behaviors that conserve momentum and energy are allowed except for tunneling. Every model
in M is closed, in that there are no external forces, so all behaviors are a consequence of the initial
conditions. To keep things simple, the set M includes three balls with specific masses m1 = 0.2,
m2 = 1.0, and m3 = 5 (these are the masses that generate the behaviors shown in Figure 8). The
units do not matter, as long as they are consistent. Assume initial positions xi (0) ∈ R, and initial
velocities vi (0) ∈ R given as follows:

x1 (0) = −1

v1 (0) = 1

x2 (0) = 0

v2 (0) = 0

x3 (0) = 1 + Δ

v3 (0) = −1,

where Δ ∈ R is a real number. Δ is the only parameter that distinguishes models in M , but this one
variable is sufficient to give us an uncountably infinite set of models. When Δ � 0, the collisions
will not be simultaneous, as illustrated in Figure 9.

Following Lee and Sangiovanni-Vincentelli [42], we formally define a model as a set of be-
haviors. It is sufficient to consider the behavior of each model over the time interval [0, 2] only.
Let B be the set of all functions of the form b : [0, 2]→ R3. For a particular model A ∈ M with
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parameter ΔA, we say that x ∈ B is a behavior of A if for all t ∈ [0, 2], xi (t ) is the position in our
one-dimensional space of ball i at time t , for i ∈ {1, 2, 3}. These xi are functions of time that satisfy
the equations of motion and conservation laws. In other words, a behavior of a model A ∈ M is a
function x giving the positions of the three balls as a function of time.

If a particular model A ∈ M has exactly one behavior, then A is deterministic. As shown above,
M contains only one nondeterministic model, let’s call it N ∈ M , the one where ΔN = 0. We can
now construct a sequence of deterministic models in D that should converge to N but does not.
To do that, we need some notion of convergence.

Consider the subset D ⊂ M of deterministic models. We can define a metric on D that allows
us to talk about models being “close.” Consider two models A,A′ ∈ D. Because they are in D,
these models are deterministic. Each admits one behavior, x ,x ′ ∈ B, respectively. Because each
has exactly one behavior, we can define a distance function d as follows:

d (A,A′) =
1

2

∫ 2

0
| |x (t ) − x ′(t ) | |dt , (4)

where | |x | | is the L1 norm of a real vector x . This distance function measures the difference between
two ball trajectories. It is easy to show that d is a metric, and hence (D,d ) is a metric space.

Consider a sequence of models Ai ∈ D, i ∈ {1, 2, . . .} where

ΔAi
= 1/i2.

As i gets larger, the time between collisions gets smaller, so in some sense, these models approx-
imate the nondeterministic case N where ΔN = 0 ever more closely as i gets larger. It is easy to
show that the sequence Ai is Cauchy, which means that for any ϵ > 0, we can find a positive
integer N such that for all positive integers i, j > N ,

d (Ai ,Aj ) < ϵ .

This means that as i and j get large, the trajectories of the balls in Ai get ever closer to the trajec-
tories of the balls in Aj . With sufficiently large i and j, Ai becomes nearly indistinguishable from
Aj . Nevertheless, this sequence has no limit in D.

The one nondeterministic model N ∈ M , where the collisions are exactly simultaneous, ΔN = 0,
admits behaviors that are very distant from the behaviors of the models in the sequence Ai using
the same metric. Some of the behaviors of N will be close (in this metric space sense) to behaviors
of a very different Cauchy sequence, Ci ∈ D, i ∈ {1, 2, . . .}, where

ΔCi
= −1/i2.

Here, the time between collisions is approaching zero from the other side.
A metric space that has Cauchy sequences that have no limit in the space is said to be “incom-

plete.” The metric space (D,d ) of deterministic models is incomplete. It does not contain all its
limit points.

Every model in the sequence Ai is deterministic, and the models in the sequence get arbitrarily
close to one another. Moreover, any set of deterministic models rich enough to encompass New-
ton’s laws that allows discrete collisions must be rich enough to include this sequence of models,
and therefore will be incomplete.

This has profound consequences that I explore in my book [38]. Specifically, many people as-
sume without proof that if some modeling technique can be shown to be able to arbitrarily closely
approximate any model of interest, then this technique is “good enough” for all practical purposes.
This example shows that this assumption is untrue unless the modeling technique defines a com-
plete set of models. Our Cauchy sequence Ai arguably represents an arbitrarily close approxima-
tion to N , and yet it fails to capture a hugely important property of N , that it is nondeterministic.
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7 CONCLUSION

I hope I have convinced you that determinism is a deep subject. In reality, I have only scratched the
surface here. In my book, The Coevolution, I explore an even harder aspect, the connection between
determinism and free will [39, Chapter 12]. (Hint: observers become important again.) The focus
there is to try to get a handle on the question of whether humans will ever build machines that
have, in any sense, free will. More practically, the question is whether we humans will ever build
machines that can and should be held accountable for their actions. That question is beyond the
scope of this article.

This article focuses instead on the practical question of the usefulness and completeness
of deterministic models. I have argued that they are extremely useful, and that even though non-
deterministic models also have their uses, those uses are disjoint. The choice of whether to use
deterministic or nondeterministic models should be front and center in any engineering design
effort, and yet it rarely is. Whether the models are deterministic or not typically depends on the
choice of modeling and design frameworks, and many of these are nondeterministic by accident,
not by intent.

I have shown that whether a model is deterministic or not depends on how one defines the
inputs and behavior of the model. To define behavior, one has to define an observer. I compared
and contrasted two classes of ways to do it, one based on the notion of “state” and another that
more flexibly defines the observables. A state-based model further requires a restrictive model of
time, one that is known to be an inaccurate model of physical time. Specifically, it requires an
unambiguous simultaneity.

I examine determinism in models of the physical world. In what may surprise many readers, I
show that Newtonian physics admits nondeterminism (unless one presupposes determinism) and
that quantum physics may be interpreted as a deterministic model. Moreover, I show that both rela-
tivity and quantum mechanics undermine the notion of “state” and therefore require the more flex-
ible ways of defining observables. Finally, I show that sufficiently rich sets of deterministic models
are incomplete, Hence, no matter how much we value them, they will not solve all our problems.

In engineering practice, whether to use nondeterministic models becomes a central question.
For scientific models, where it is incumbent on the model to match the thing being modeled, non-
determinism can be useful if it reflects inherent randomness or uncertainty about the thing being
modeled. In this case, nondeterminism enables exploration of the range of possible behaviors.
However, nondeterminism says nothing about the likelihood of any behavior, only about its possi-
bility. Hence, a probabilistic model may be more useful than a nondeterministic one. A probabilistic
model may usefully model a deterministic system (by interpreting probabilities as a measure of
uncertainty) and may even, in some circumstances, be interpreted as a deterministic model (as we
can do with quantum physics).

For engineering models, where it is incumbent on the thing being modeled to match the model,
nondeterminism can be a useful abstraction mechanism, a way to get simpler models for analy-
sis. It can also be useful for deferring design decisions. However, it comes at a steep price. The
model becomes less useful for testing, for evaluating the degree to which the thing being modeled
matches the model. Nondeterminism that arises from sloppiness in the modeling framework or
language, however, is rarely useful and should not be excused by the fact that the physical world
is unpredictable in practice.

My own focus as an engineer is on cyber-physical systems, which combine the neat world of
computation with the messy and unpredictable physical world. Deterministic models play an im-
portant role on both sides of this divide. For example, on the physical side, deterministic differen-
tial equation models can be useful descriptions of how a robot arm should behave, particularly if
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coupled with probabilistic models of how it may actually behave. On the cyber side, for distributed
software, clear specifications of how the components should coordinate are useful, particularly if
coupled with probabilistic models of network behavior that may compromise these specifications.
In both cases, we are talking about a combination of engineering and scientific models.

Today, engineers settle for much less than this. For example, in robotics, the Robot Operat-

ing System (ROS) [62] is popular for coordinating disparate software components, but it uses
a publish-and-subscribe communication fabric that is unnecessarily nondeterministic [48]. In the
context of the Internet of Things (IoT), MQTT [25] is a popular coordination mechanism that is
similarly based on publish-and-subscribe. The latest and greatest in automotive software, Adaptive
AUTOSAR [2], is also unnecessarily nondeterministic [52]. In industrial automation, the standards
governing Programmable Logic Controller (PLC) software also admit nondeterminsm [69].
The actor-based communication fabrics of Erlang [1], Akka [63], and Ray [56] are similarly non-
deterministic [47]. In all of these frameworks, it is possible to construct deterministic models, but it
requires considerable expertise in concurrent software, expertise well outside the comfort zone of
most application engineers. So the application engineers accept the nondeterminism, tweak pri-
orities, insert ad hoc delays, test their implementations extensively, and hope for the best. We can
do better.
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