
RT-Sketch: Goal-Conditioned Imitation Learning
from Hand-Drawn Sketches

Priya Sundaresan1,3, Quan Vuong2, Jiayuan Gu2, Peng Xu2, Ted Xiao2, Sean Kirmani2, Tianhe Yu2,
Michael Stark3, Ajinkya Jain3, Karol Hausman1,2, Dorsa Sadigh∗1,2, Jeannette Bohg∗2, Stefan Schaal∗3

∗Equal advising, alphabetical order
1Stanford University, 2Google DeepMind, 3[Google] Intrinsic

Fig. 1: (Left) Qualitative rollouts comparing RT-Sketch, RT-1, and RT-Goal-Image, (right) highlighting RT-Sketch’s robustness to (top) ambiguous language
and (bottom) visual distractors.

Abstract—Natural language and images are commonly used as
goal representations in goal-conditioned imitation learning (IL).
However, natural language can be ambiguous and images can
be over-specified. In this work, we study hand-drawn sketches
as a modality for goal specification. Sketches are easy for users
to provide on the fly like language, but similar to images they
can also help a downstream policy to be spatially-aware and
even go beyond images to disambiguate task-relevant from task-
irrelevant objects. We present RT-Sketch, a goal-conditioned
policy for manipulation that takes a hand-drawn sketch of
the desired scene as input, and outputs actions. We train RT-
Sketch on a dataset of trajectories paired with synthetically
generated goal sketches. We evaluate this approach on six
manipulation skills involving tabletop object rearrangements
on an articulated countertop. Experimentally we find that RT-
Sketch is able to perform on a similar level to image or language-
conditioned agents in straightforward settings, while achieving
greater robustness when language goals are ambiguous or visual
distractors are present. Additionally, we show that RT-Sketch has
the capacity to interpret and act upon sketches with varied levels
of specificity, ranging from minimal line drawings to detailed,
colored drawings. For supplementary material and videos, please
refer to our website.

I. INTRODUCTION

Robots operating alongside humans in households, work-
places, or industrial environments have an immense potential
for assistance and autonomy, but careful consideration is

needed of what goal representations are easiest for humans
to convey to robots, and for robots to interpret and act upon.

Instruction-following robots attempt to address this problem
using the intuitive interface of natural language commands as
inputs to language-conditioned imitation learning policies [8,
9, 23, 28, 29]. For instance, imagine asking a household robot
to set the dinner table. A language description such as “put
the utensils, the napkin, and the plate on the table” is under-
specified or ambiguous. It is unclear how exactly the utensils
should be positioned relative to the plate or the napkin, or
whether their distances to each other matter or not. To achieve
this higher level of precision, a user may need to give lengthier
descriptions such as “put the fork 2cm to the right of the
plate, and 5cm to the leftmost edge of the table.”, or even
online corrections (“no, you moved too far to the right, move
back a bit!”) [15, 29]. While language is an intuitive way to
specify goals, its qualitative nature and ambiguities can make
it both inconvenient for humans to provide without lengthy
instructions or corrections, and for robot policies to interpret
for downstream precise manipulation.

Using goal images to specify objectives and training goal-
conditioned imitation learning policies either paired with or
without language instructions has shown to be quite successful
in recent years [21, 22, 35]. In these settings, an image of the

ar
X

iv
:2

40
3.

02
70

9v
1

 [
cs

.R
O

]
 5

 M
ar

 2
02

4

http://rt-sketch.github.io

scene in its desired final state could fully specify the intended
goal. However, this has its own shortcomings: access to a
goal image is a strong prior assumption, and a pre-recorded
goal image can be tied to a particular environment, making it
difficult to reuse for generalization.

To summarize: while natural language is highly flexible, it
can also be highly ambiguous or require lengthy descriptions.
This quickly becomes difficult in long-horizon tasks or those
requiring spatial awareness. Meanwhile, goal images over-
specify goals in unnecessary detail, leading to the need for
internet-scale data for generalization.

To address these challenges, we study hand-drawn sketches
as a convenient yet expressive modality for goal specification
in visual imitation learning. By virtue of being minimal,
sketches are still easy for users to provide on the fly like
language, but allow for more spatially-aware task specification.
Like goal images, sketches readily integrate with off-the-shelf
policy architectures that take visual input, but provide an added
level of goal abstraction that ignores unnecessary pixel-level
details. Finally, the quality and selective inclusion/exclusion of
details in a sketch can help a downstream policy distinguish
task relevant from irrelevant details.

In this work, we present RT-Sketch, a goal-conditioned
policy for manipulation that takes a user-provided hand-drawn
sketch of the desired scene as input, and outputs actions.
The novel architecture of RT-Sketch modifies the original RT-
1 language-to-action Transformer architecture [9] to consume
visual goals rather than language, allowing for flexible condi-
tioning on sketches, images, or any other visually representable
goals. To enable this, we concatenate a goal sketch and
history of observations as input before tokenization, omitting
language. We train RT-Sketch on a dataset of 80K trajectories
paired with synthetic goal sketches, generated by an image-to-
sketch stylization network trained from a few hundred image-
sketch pairs.

We evaluate RT-Sketch across six manipulation skills on
real robots involving tabletop object rearrangements on a
countertop with drawers, subject to a wide range of scene
variations. These skills include moving objects near to one
another, knocking a can sideways, placing a can upright,
closing a drawer, and opening a drawer. Experimentally, we
find that RT-Sketch performs on a similar level to image or
language-conditioned agents in straightforward settings. When
language instructions are ambiguous, or in the presence of
visual distractors, we find that RT-Sketch achieves ∼ 2X more
spatial precision and alignment scores, as assessed by human
labelers, over language or goal image-conditioned policies
(see Fig. 1 (right)). Additionally, we show that RT-Sketch can
handle different levels of input specificity, ranging from rough
sketches to more scene-preserving, colored drawings (see
Fig. 1 (left)).

II. RELATED WORK

In this section, we discuss prior methods for goal-
conditioned imitation learning. We also highlight ongoing
efforts towards image-sketch conversion, which open new

possibilities for goal-conditioning modalities which are under-
explored in robotics.

a) Goal-Conditioned Imitation Learning: Despite the
similarity in name, our learning of manipulation policies
conditioned on hand-drawn sketches of the desired scene is
different from the notion of policy sketches [1], symbolic
representations of task structure describing its subcomponents.
Reinforcement learning (RL) is not easily applicable in our
scenario, as it is nontrivial to define a reward objective which
accurately quantifies alignment between a provided scene
sketch and states visited by an agent during training. We in-
stead focus on imitation learning (IL) techniques, particularly
the goal-conditioned setting [17].

Goal-conditioned IL has proven useful in settings where a
policy must be able to handle spatial or semantic variations
for the same task [3]. These settings include rearrangement
of multiple objects [8, 9, 29, 30, 35], kitting [46], folding
of deformable objects into different configurations [18], and
search for different target objects in clutter [16]. However,
these approaches tend to either rely on language [9, 23, 28,
29, 39], or goal images [16] to specify variations. Follow-
up work enabled multimodal conditioning on either goal
images and language [21], in-prompt images [22], or image
embeddings [18, 30, 46]. However, all of these representations
are ultimately derived from raw images or language in some
way, which overlooks the potential for more abstract goal
representations that are easy to specify but preserve spatial
awareness, such as sketches.

In addition to their inflexibility in terms of goal representa-
tion, goal-conditioned IL tends to overfit to demonstration data
and fails to handle even slight distribution shift in new sce-
narios [37]. For language-conditioning, distribution shift can
encompass semantic or spatial ambiguity, novel instructions or
phrasing, or unseen objects [9, 21]. Goal-image conditioning
is similarly susceptible to out-of-distribution visual shift, such
as variations in lighting or object appearances, or unseen
background textures [5, 11]. We instead opt for sketches
which are minimal enough to combat visual distractors, yet
expressive enough to provide unambiguous goals. Prior work,
including [4] and [32], have shown the utility of sketches
over pure language for navigation and limited manipulation
settings. However, the sketches explored in these works are
largely intended to guide low-level motion at the joint-level
for manipulation, or provide explicit directional cues for
navigation. [14] considers sketches amongst other modalities
as an input for goal-conditioned manipulation, but does not
explicitly train a policy conditioned on sketches. They thus
came to the conclusion that the scene image is better than
the sketch image at goal specification. Our result is different
and complementary, in that policies trained to take sketches
as input outperform a scene image conditioned policy, by
1.63x and 1.5x in terms of Likert ratings for perceived spatial
and semantic alignment, subject to visual distractors. Most re-
cently, Gu et al. [19] propose an approach to goal-conditioned
manipulation via hindsight-trajectory sketches. Here, sketches
represent 2D paths drawn over an image to indicate the desired

trajectory for the robot to follow. While this work treats
sketches as a motion-centric representation to specify intended
robot trajectories, the sketches in our work are scene-centric,
representing the desired visual goal state rather than the actions
the robot should explicitly take.

b) Image-Sketch Conversion: In recent years, sketches
have gained increasing popularity within the computer vision
community for applications such as object detection [6, 7, 12],
visual question answering [25, 33], and scene understand-
ing [13], either in isolation or in addition to text and images.
When considering how best to incorporate sketches in IL,
an important design choice is whether to take sketches into
account (1) at test time (i.e., converting a sketch to another
goal modality compatible with a pre-trained policy), or (2) at
training time (i.e., explicitly training an IL policy conditioned
on sketches). For (1), one could first convert a given sketch to a
goal image, and then roll out a vanilla goal-image conditioned
policy. This could be based on existing frameworks for sketch-
to-image conversion, such as ControlNet [47], GAN-style
approaches [24], or text-to-image synthesis, such as Instruct-
Pix2Pix [10] or Stable Diffusion [36]. While these models
produce photorealistic results under optimal conditions, they
do not jointly handle image generation and style transfer,
making it unlikely for generated images to match the style
of an agent observations. At the same time, these approaches
are susceptible to producing hallucinated artifacts, introducing
distribution shifts [47].

Based on these challenges, we instead opt for (2), and
consider image-to-sketch conversion techniques for hindsight
relabeling of terminal images in pre-recorded demonstration
trajectories. Recently, Vinker et al. [44, 45] proposes networks
for predicting Bezier curve-based sketches of input image
objects or scenes. Sketch quality is supervised by a CLIP-
based alignment metric. While these approaches generate
sketches of high visual fidelity, test-time optimization takes
on the order of minutes, which does not scale to the typical
size of robot learning datasets (hundreds to thousands of
demonstration trajectories). Meanwhile, conditional generative
adversarial networks (cGANs) such as Pix2Pix [20] have
proven useful for scalable image-to-image translation. Most
related to our work is that of Li et al. [26], which trains a
Pix2Pix model to produce sketches from given images on a
large crowd-sourced dataset of 5K paired images and line
drawings. We build on this work to fine-tune an image-to-
sketch model on robot trajectory data, and show its utility for
enabling downstream manipulation from sketches.

III. SKETCH-CONDITIONED IMITATION LEARNING

In this section, we will first introduce our problem of learn-
ing a sketch-conditioned policy. We will then discuss our ap-
proach to train an end-to-end sketch-to-action IL agent. First,
in Section III-A, we discuss our instantiation of an auxiliary
image-to-sketch translation network which automatically gen-
erates sketches from a reference image. In Section III-B, we
discuss how we use such a model to automatically hindsight
relabel an existing dataset of demonstrations with synthetically

generated goal sketches, and train a sketch-conditioned policy
on this dataset.

a) Problem Statement: Our goal is to learn a manipula-
tion policy conditioned on a goal sketch of the desired scene
state and a history of interactions. Formally, we denote such a
policy by πsketch(at|g, {oj}tj=1), where at denotes an action
at timestep t, g ∈ RW×H×3 is a given goal sketch with width
W and height H , and ot ∈ RW×H×3 is an observation at
time t. At inference time, the policy takes a given goal sketch
along with a history of RGB image observations to infer
an action to execute. In practice, we condition πsketch on a
history of D previous observations rather than all observations
from the initial state at t = 1. To train such a policy, we
assume access to a dataset Dsketch = {gn, {(ont , ant)}T

(n)

t=1 }Nn=1

of N successful demonstrations, where T (n) refers to the
length of the nth trajectory in timesteps. Each episode of the
dataset consists of a given goal sketch and a corresponding
demonstration trajectory, with image observations recorded at
each timestep. Our goal is to thus learn the sketch-conditioned
imitation policy πsketch(at|g, {oj}tj=1) trained on this dataset
Dsketch.

A. Image-to-Sketch Translation

Training a sketch-conditioned policy requires a dataset of
robot trajectories that are each paired with a sketch of the
goal state achieved by the robot. Collecting such a dataset
from scratch at scale, including the trajectories themselves
and manually drawn sketches, can easily become impractical.
Thus, we instead aim to learn an image-to-sketch transla-
tion network T (g|o) that takes an image observation o and
outputs the corresponding goal sketch g. This network can
be used to post-process an existing dataset of demonstra-
tions D = {{(ont , ant)}T

(n)

t=1 }Nn=1 with image observations
by appending a synthetically generated goal sketch to each
demonstration. This produces a dataset for sketch-based IL:
Dsketch = {gn, {(ont , ant)}T

(n)

t=1 }Nn=1.
a) RT-1 Dataset: In this work, we rely on an existing

dataset of visual demonstrations collected by prior work [9].
RT-1 is a prior language-to-action imitation learning agent
trained on a large-scale dataset (80K trajectories) of VR-
teleoperated demonstrations that include skills such as moving
objects near one another, placing cans and bottles upright or
sideways, opening and closing cabinets, and performing pick
and place on countertops and drawers [9]. Here, we repurpose
the RT-1 dataset and further adapt the RT-1 policy architecture
to accommodate sketches, detailed in Section III-B.

b) Assumptions on Sketches: We acknowledge that there
are innumerable ways for a human to provide a sketch
corresponding to a given image of a scene. In this work,
we make the following assumptions about input sketches for
a controlled experimental validation procedure. In particular,
we first assume that a given sketch respects the task-relevant
contours of an associated image, such that tabletop edges,
drawer handles, and task-relevant objects are included and
discernible in the sketch. We do not assume contours in the
sketch to be edge-aligned or pixel-aligned with those in an

Fig. 2: Architecture of RT-Sketch allowing different kinds of visual input. RT-Sketch adopts the Transformer [43] architecture with EfficientNet [41] tokenization
at the input, and outputs bucketized actions.

image. We do assume that the input sketch consists of black
outlines at the very least, with shading in color being optional.
We further assume that sketches do not contain information not
present in the associated image, such as hallucinated objects,
scribbles, or textual annotations, but may omit task-irrelevant
details that appear in the original image.

c) Sketch Dataset Generation: To train an image-to-
sketch translation network T , we collect a new dataset DT =
{(oi, g1i , . . . , gL

(i)

i)}Mi=1 consisting of M image observations
oi each paired with a set of goal sketches g1i , . . . , g

L(i)

i . Those
represent L(i) different representations of the same image oi,
in order to account for the fact that there are multiple, valid
ways of sketching the same scene. To collect DT , we take
500 randomly sampled terminal images from demonstration
trajectories in the RT-1 dataset, and manually draw sketches
with black lines on a white background capturing the tabletop,
drawers, and relevant objects visible on the manipulation
surface. While we personally annotate each robot observation
with a single sketch only, we add this data to an existing, much
larger non-robotic dataset [26]. This dataset captures inter-
sketch variation via multiple crowdsourced sketches per image.
We do not include the robot arm in our manual sketches, as we
find a minimal representation to be most natural. Empirically,
we find that our policy can handle such sketches despite actual
goal configurations likely having the arm in view. We collect
these drawings using a custom digital stylus drawing interface
in which a user draws an edge-aligned sketch over the original
image (Appendix Fig. 16). The final recorded sketch includes
the user’s strokes in black on a white canvas with the original
image dimensions.

d) Image-to-Sketch Training: We implement the image-
to-sketch translation network T with the Pix2Pix conditional
generative adversarial network (cGAN) architecture, which is
composed of a generator GT and a discriminator DT [20].
The generator GT takes an input image o, a random noise
vector z, and outputs a goal sketch g. The discriminator DT is
trained to discriminate amongst artificially generated sketches
and ground truth goal sketches. We utilize the standard cGAN
supervision loss to train both [20, 26]:

LcGAN = min
GT

max
DT

Eo,g[logDT (o, g)] +

Eo,g[log(1−DT (o,GT (o, g))]
(1)

We also add the L1 loss to encourage the produced sketches
to align with the ground truth sketches as in [26]. To account
for the fact that there may be multiple valid sketches for a
given image, we only penalize the minimum L1 loss incurred
across all L(i) sketches provided for a given image as in Li
et al. [26]. This is to prevent wrongly penalizing T for
producing a valid sketch that aligns well with one example
but not another simply due to stylistic differences in the
ground truth sketches. The final objective is then a λ-weighted
combination of the average cGAN loss and the minimum
alignment loss:

LT =
λ

L(i)

L(i)∑
k=1

LcGAN(oi, g
(k)
i) + min

k∈{1,...,L(i)}
L1(oi, g

(k)
i)

(2)
In practice, we supplement the 500 manually drawn sketches

from DT by leveraging the existing larger-scale Contour
Drawing Dataset [26]. We refer to this dataset as DCD, which
contains 1000 examples of internet-scraped images contain-
ing objects, people, animals from Adobe Stock, paired with
L(i) = 5 crowd-sourced black and white outline drawings per
image collected on Amazon Mechanical Turk. Visualizations
of this dataset are provided in Appendix Fig. 5. We first take
a pre-trained image-to-sketch translation network TCD [26]
trained on DCD, with L(i) = 5 sketches per image. Then, we
fine-tune TCD on DT , with only L(i) = 1 manually drawn
sketch per robot observation, to obtain our final image-to-
sketch network T . Visualizations of the sketches generated
by T for different robot observations are available in Fig. 6.

B. RT-Sketch

With a means of translating image observations to black and
white sketches via T (Section III-A), we can automatically
augment the existing RT-1 dataset with goal sketches. This

results in a dataset, which we refer to as Dsketch, which can
be used for training our algorithm, RT-Sketch.

a) RT-Sketch Dataset: The original RT-1 dataset Dlang =

{in, {(ont , ant)}T
(n)

t=1 }Nn=1 consists of N episodes with a paired
natural language instruction i and demonstration trajectory
{(ont , ant)}T

n

t=1. We can automatically hindsight-relabel such
a dataset with goal images instead of language goals [2].
Let us denote the last step of a trajectory n as T (n). Then
the new dataset with image goals instead of language goals
is Dimg = {on

T (n) , {(ont , ant)}T
(n)

t=1 }Nn=1, where we treat the
last observation of the trajectory on

T (n) as the goal gn. To
produce a dataset for πsketch, we can simply replace on

T (n) with
ĝn = T (on

T (n)) such that Dsketch = {ĝn, {(ont , ant)}T
(n)

t=1 }Nn=1.
To encourage the policy to afford different levels of input

sketch specificity, we in practice produce goals by ĝn =
A(on

T (n)), where A is a randomized augmentation function.
A chooses between simply applying T , T with colorization
during postprocessing (e.g., by superimposing a blurred ver-
sion of the ground truth RGB image over the binary sketch),
a Sobel operator [40] for edge detection, or not applying
any operators, which preserves the original ground truth goal
image (Fig. 2). By co-training on all representations, we intend
for RT-Sketch to handle a spectrum of specificity going from
binary sketches; colorized sketches; edge detected images; and
goal images (Appendix Fig. 6).

b) RT-Sketch Model Architecture: In our setting, we
consider goals provided as sketches rather than language
instructions as was done in RT-1. This change in the input
representation necessitates a change in the model architecture.
The original RT-1 policy relies on a Transformer architecture
backbone [43]. RT-1 first passes a history of D = 6 im-
ages through an EfficientNet-B3 model [41] producing image
embeddings, which are tokenized, and separately extracts
textual embeddings and tokens via FiLM [31] and a Token
Learner [38]. The tokens are then fed into a Transformer which
outputs bucketized actions. The output action dimensionality is
7 for the end-effector (x, y, z, roll, pitch, yaw, gripper width),
3 for the mobile base, (x, y, yaw), and 1 for a flag that can
select amongst base movement, arm movement, and episode
termination. To retrain the RT-1 architecture but accommodate
the change in input representation, we omit the FiLM language
tokenization altogether. Instead, we concatenate a given goal
image or sketch with the history of images as input to
EfficientNet, and extract tokens from its output, leaving the
rest of the policy architecture unchanged. We visualize the
RT-Sketch training inputs and policy architecture in Fig. 2.
We refer to this architecture when trained only on images
(i.e., an image goal-conditioned RT1 policy) as RT-Goal-Image
and refer to it as RT-Sketch when it is trained on sketches as
discussed in this section.

c) Training RT-Sketch: We can now train πsketch on
Dπsketch

utilizing the same procedure as was used to train RT-
1 [9], with the above architectural modifications. We fit πsketch

using the behavioral cloning objective function. This aims to
minimize the negative log-likelihood of an action provided the

history of observations and a given sketch goal [42]:

J(πsketch) =

N∑
n=1

T (n)∑
t=1

log πsketch(a
n
t |gn, {oj}tj=1)

IV. EXPERIMENTS

We seek to understand the ability of RT-Sketch to perform
goal-conditioned manipulation as compared to policies that
operate from higher-level goal abstractions like language, or
more over-specified modalities, like goal images. To that end,
we test the following four hypotheses:

H1: RT-Sketch is successful at goal-conditioned IL.
While sketches are abstractions of real images, our hypothesis
is that they are specific enough to provide manipulation goals
to a policy. Therefore, we expect RT-Sketch to perform on
a similar level to language goals (RT-1) or goal images (RT-
Goal-Image) in straighforward manipulation settings.

H2: RT-Sketch is able to handle varying levels of
specificity. There are as many ways to sketch a scene as there
are people. Because we have trained RT-Sketch on sketches of
varying levels of specificity, we expect it to be robust against
variations of the input sketch for the same scene.

H3: Sketches enable better robustness to distractors
than goal images. Sketches focus on task-relevant details of a
scene. Therefore, we expect RT-Sketch to provide robustness
against distractors in the environment that are not included
in the sketch compared to RT-Goal-Image that operates on
detailed image goals.

H4: Sketches are favorable when language is ambigu-
ous. We expect RT-Sketch to provide a higher success rate
compared to ambiguous language inputs when using RT-1.

A. Experimental Setup

a) Policies: We compare RT-Sketch to the original
language-conditioned agent RT-1 [9], and RT-Goal-Image, a
policy identical in architecture to RT-Sketch, but taking a goal
image as input rather than a sketch. All policies are trained on
a multi-task dataset of ∼ 80K real-world trajectories manually
collected via VR teleoperation using the setup from Brohan
et al. [9]. These trajectories span a suite of common office
and kitchen tasks such as picking and placing objects, re-
orienting cups and bottles upright or sideways, opening and
closing drawers, and rearranging objects between drawers or
a countertop.

b) Evaluation protocol: To ensure fair comparison, we
control for the same initial and goal state of the environment
across different policy rollouts via a catalog of well-defined
evaluation scenarios that serve as references for human robot
operators. For each scenario, we record an initial image
(RGB observation) of the scene, the goal image (with objects
manually rearranged as desired), a natural language task string
describing the desired agent behavior to achieve the goal, and a
set of hand-drawn sketches corresponding to the recorded goal
image. At test time, a human operator retrieves a particular
evaluation scenario from the catalog, aligns the physical robot
and scene according to a reference image using a custom

Fig. 3: Goal Alignment Results: Average Likert scores for different policies rating perceived semantic alignment (Q1) and spatial alignment (Q2) to a
provided goal. For straightforward benchmark manipulation tasks, RT-Sketch performs comparably and in some cases better than RT-1 and RT-Goal-Image in
terms of both metrics, for 5 out of 6 skills (H1). RT-Sketch further exhibits the ability to handle sketches of different levels of detail (H2), while achieving
better goal alignment than baselines when the visual scene is distracting (H3) or language would be ambiguous (H4). Error bars indicate standard error across
labeler ratings.

visualization utility, and places the relevant objects in their
respective locations. Finally, the robot selects one of the goal
representations (language, image, sketch, etc.) for the scenario
as input to a policy. We record a video of the policy rollout
for downstream evaluation (see Section IV-B). We perform
all experiments using the Everyday Robot, which contains a
mobile base, an overhead camera, and a 7-DoF manipulator
arm with a parallel jaw gripper. All sketches for evaluation are
collected with a custom manual drawing interface by a single
human annotator on a tablet with a digital stylus.

c) Performance Metrics: Defining a standardized, auto-
mated evaluation protocol for goal alignment is non-trivial.
Since binary task success is too coarse-grained and image-
similarity metrics like frame-differencing or CLIP [34] tend
to be brittle, we measure performance with two more targeted
metrics. First, we quantify policy precision as the distance
(in pixels) between object centroids in achieved and ground
truth goal states, using manual keypoint annotations. Although
leveraging out-of-the box object detectors to detect object
centroids is a possibility, we want to avoid conflating errors in
object detection (imprecise bounding box, wrong object, etc.)
from manipulation error of the policy itself. Second, we gather
human-provided assessments of perceived goal alignment,
following the commonly-used Likert [27] rating scheme from
1 (Strongly Disagree) to 7 (Strongly Agree), for:

• (Q1) The robot achieves semantic alignment with the
given goal during the rollout.

• (Q2) The robot achieves spatial alignment with the given
goal during the rollout.

For Q1, we present labelers with the policy rollout video
along with the given ground-truth language task descrip-
tion. We expect reasonably high ratings across all meth-
ods for straightforward manipulation scenarios (H1). Sketch-
conditioned policies should yield higher scores than a
language-conditioned policy when a task string is ambiguous
(H4). Q2 is instead geared at measuring to what degree a
policy can spatially arrange objects as desired. For instance, a
policy can achieve semantic alignment for the instruction place
can upright as long as the can ends up in the right orientation.
For Q2, we visualize a policy rollout side-by-side with a
given visual goal (ground truth image, sketch, etc.) to assess
perceived spatial alignment. We posit that all policies should
receive high ratings for straightforward scenarios (H1), with
a slight edge for visual-conditioned policies which implicitly
have stronger spatial priors encoded in goals. We further
expect that as the visual complexity of a scene increases,
sketches may be able to better attend to pertinent aspects
of a goal and achieve better spatial alignment than image-
conditioned agents (H3), even for different levels of sketch
specificity (H4). We provide a visualization of the assessment
interface for Q1 and Q2 in Appendix Fig. 17. We note that we
perform these human assessment surveys across 62 individuals
(non-expert, unfamiliar with our system), where we assign
between 8 and 12 people to evaluate each of the 6 different

Spatial Precision (RMSE in px.) Failure Occurrence (Excessive Retrying)
Skill RT-1 RT-Sketch RT-Goal-Image RT-1 RT-Sketch RT-Goal-Image

Move Near 5.43± 2.15 3.49± 1.38 3.89± 1.16 0.00 0.06 0.33
Pick Drawer 5.69± 2.90 4.77± 2.78 4.74± 2.01 0.00 0.13 0.20
Drawer Open 4.51± 1.55 3.34± 1.08 4.98± 1.16 0.00 0.00 0.07
Drawer Close 2.69± 0.93 3.02± 1.35 3.71± 1.67 0.00 0.00 0.07

Knock 7.39± 1.77 5.36± 2.74 5.63± 2.60 0.00 0.13 0.40
Upright 7.84± 2.37 5.08± 2.08 4.18± 1.54 0.06 0.00 0.27

Visual Distractors - 4.78± 2.17 7.95± 2.86 - 0.13 0.67
Language Ambiguity 8.03± 2.52 4.45± 1.54 - 0.40 0.13 -

TABLE I: Spatial Precision and Failure Occurrence : Left: We report the level of spatial precision achieved across policies, measured in terms of RMSE of
the centroids of manipulated objects in achieved vs. given reference goal images. Darker shading indicates higher precision (lower centroid distance). Fig. 8
contains visualizations illustrating the degree of visual alignment that different RMSE values correspond to. Right: We report the proportion of rollouts in
which different policies exhibit excessive retrying behavior. Bolded numbers indicate the most precise and least failure-prone policy for each skill.

skills considered below.

B. Experimental Results

In this section, we present our findings related to the
hypotheses of Section IV. Tables I and II measure the spatial
precision achieved by policies in terms of pixelwise distance,
while Fig. 3 shows the results of human-perceived semantic
and spatial alignment, based on a 7-point Likert scale rating.

H1: We evaluate 6 skills from the RT-1 benchmark [9]:
move X near Y, place X upright, knock X over, open the X
drawer, close the X drawer, and pick X from Y. For each skill,
we record 15 different catalog scenarios, varying both objects
(16 unique in total) and their placements.

In general, we find that RT-Sketch performs on a compara-
ble level to RT-1 and RT-Goal-Image for both semantic (Q1)
and spatial alignment (Q2), achieving ratings in the ‘Agree’
to ‘Strongly Agree’ range on average for nearly all skills
(Fig. 3 (top)). A notable exception is upright, where RT-
Sketch essentially fails to accomplish the goal semantically
(Q1), albeit with some degree of spatial alignment (Q2). Both
RT-Sketch and RT-Goal-Image tend to position cans or bottles
appropriately and then terminate, without realizing the need for
reorientation (Appendix Fig. 9). This behavior results in low
centroid-distance to the goal (darker gray in Table I (left)). RT-
1, on the other hand, reorients cans and bottles successfully,
but at the expense of higher error (Appendix Fig. 9, light color
in Table I (left)). In our experiments, we also observe the
occurrence of excessive retrying behavior, in which a policy
attempts to align the current scene with a given goal with
retrying actions such as grasping and placing. However, per-
forming these low-level actions with a high degree of precision
is challenging, and thus excessive retrying can actually disturb
the scene leading to knocking objects off the table or undoing
task progress. In Table I, we report the proportion of rollouts
in which we observe this behavior across all policies. We
note that RT-Goal-Image is most susceptible to this failure
mode, as a result of over-attending to pixel-level details and
trying in excess to match a given goal exactly. Meanwhile, RT-
Sketch and RT-1 are far less vulnerable, since both sketches
and language provide a higher level of goal abstraction.

H2: We next assess RT-Sketch’s ability to handle input
sketches of varied levels of detail (free-hand, edge-aligned
line sketch, colorized line sketch, and a Sobel edge-detected
image as an upper bound). Free-hand sketches are drawn
with a reference image next to a blank canvas, while line
sketches are drawn on a semi-transparent canvas overlaid on
the image (see Appendix Fig. 16). We find such a UI to be
convenient and practical, as an agent’s current observations
are typically available and provide helpful guides for sketching
lines and edges. Across 5 trials each of the move near and open
drawer skills, we see in Table II that all types of sketches
produce reasonable levels of spatial precision. As expected,
Sobel edges incur the least error, but even free-hand sketches,
which do not necessarily preserve perspective projection, and
line sketches, which are far sparser in detail, are not far
behind. This is also reflected in the corresponding Likert
ratings (Fig. 3 (left, bottom)). Free-hand sketches already
garner moderate ratings (around 4) of perceived spatial and
semantic alignment, but line sketches result in a marked
performance improvement to nearly 7, on par with the upper
bound of providing an edge-detected goal image. Adding color
does not improve performance further, but leads to interesting
qualitative differences in behavior (see Appendix Fig. 10).

We also evaluate whether RT-Sketch can generalize to
sketches drawn by different individuals and handle stylistic
variations. We first collect 30 sketches drawn by 6 different
annotators using line sketching (tracing) on 5 goal images from
the move near evaluation scenarios. We obtain the resulting
rollouts produced by RT-Sketch with these sketches as input.
Across 22 human evaluators who report their perceived spatial
alignment via Likert ratings, we find that RT-Sketch achieves
high spatial alignment on sketches drawn by other annotators.
Notably, there is no significant dropoff in performance be-
tween sketches drawn by different annotators, or in the policy
performance as compared to when our original sketches are
the input (Fig. 4).

H3: Next, we compare the robustness of RT-Sketch and RT-
Goal-Image to the presence of visual distractors. We re-use 15
move X near Y trials from the catalog, but introducing 5− 9
distractor objects into the initial visual scene after alignment.

Fig. 4: Perceived Spatial Alignment for Sketches Drawn by Other
Annotators (H2): Across line sketches drawn by 6 annotators who are not
represented in the training dataset for RT-Sketch, we record policy rollouts
with these sketches as input for the move near skill. We evaluate the resulting
rollouts across 22 human evaluators who provide Likert ratings measuring
spatial alignment between the achieved goal state and given sketch. RT-
Sketch’s performance on these new input sketches is on par with policy
performance on our original sketches (OURS), and with no significant dropoff
between sketches drawn by different annotators.Skill Free-Hand Line Sketch Color Sketch Sobel Edges

Move Near 7.21 ± 2.76 3.49 ± 1.38 3.45 ± 1.03 3.36 ± 0.66
Drawer Open 3.75 ± 1.63 3.34 ± 1.08 2.48 ± 0.50 2.13 ± 0.25

TABLE II: RT-Sketch Spatial Precision across Sketch Types (RMSE
(centroid-distance) in px. We report the spatial precision achieved by RT-
Sketch subject to different input modalities. As expected, for less detailed and
more rough sketches, RT-Sketch achieves lower precision (lighter shading),
and for richer representations RT-Sketch is more precise (bolded, darker
shading). Still, there is a relatively small difference in performance between
line, color, and edge-detected representations, indicating RT-Sketch’s ability
to afford different levels of input specificity.

This testing procedure is adapted from RT-1 generalization
experiments referred to as medium-high difficulty [9]. In
Table I (left, bottom), we see that RT-Sketch exhibits far lower
spatial errors on average, while producing higher semantic and
spatial alignment scores over RT-Goal-Image(Fig. 3 (middle,
bottom)). RT-Goal-Image is easily confused by the distribution
shift introduced by distractor objects, and often cycles between
picking up and putting down the wrong object. RT-Sketch, on
the other hand, ignores task-irrelevant objects not captured in
a sketch and completes the task in most cases (see Appendix
Fig. 11).

H4: Finally, we evaluate whether sketches as a representa-
tion are favorable when language goals alone are ambiguous.
We collect 15 scenarios encompassing 3 types of ambigu-
ity in language instructions: instance ambiguity (T1) (e.g.,
move apple near orange when multiple orange instances
are present), somewhat out-of-distribution (OOD) language
(T2) (e.g., move left apple near orange), and highly OOD
language (T3) (e.g., complete the rainbow) (see Appendix
Fig. 12). While the latter two qualifications should intuitively
help resolve ambiguities, they were not explicitly made part of
the original RT-1 training [9], and hence only provide limited
utility. In Table I (left, bottom), RT-Sketch achieves nearly half
the error of RT-1, and a 2.39-fold and 2.79-fold score increase
for semantic and spatial alignment, respectively (Fig. 3 (right,
bottom)). For T1 and T2 scenarios, RT-1 often tries to pick

up an instance of any object mentioned in the task string, but
fails to make progress beyond that (Appendix Fig. 13). This
further suggests the utility of sketches to express new, unseen
goals with minimal overhead, when language could otherwise
be opaque or difficult to express with only in-distribution
vocabulary (Appendix Fig. 14).

a) Limitations and Failure Modes: Firstly, the image-to-
sketch generation network used in this work is fine-tuned on a
dataset of sketches provided by a single human annotator. Al-
though we empirically show that despite this, RT-Sketch can
handle sketches drawn by other annotators, we have yet to
investigate the effects of training RT-Sketch at scale with
sketches produced by different people. Secondly, we note that
RT-Sketch shows some inherent biases towards performing
certain skills it was trained on, and occasionally performs
the wrong skill. For a detailed breakdown of RT-Sketch’s
limitations and failure modes, please see Appendix A).

V. CONCLUSION

We propose RT-Sketch, a goal-conditioned policy for ma-
nipulation that takes a hand-drawn sketch of the desired scene
as input, and outputs actions. To enable such a policy, we first
develop a scalable way to generate paired sketch-trajectory
training data via an image-to-sketch translation network, and
modify the existing RT-1 architecture to take visual informa-
tion as an input. Empirically, we show that RT-Sketch not
only performs on a comparable level to existing language or
goal-image conditioning policies for a number of manipulation
skills, but is amenable to different degrees of sketch fidelity,
and more robust to visual distractors or ambiguities. Future
work will focus on extending hand-drawn sketches to more
structured representations, like schematics or diagrams for
assembly tasks. While powerful, sketches are not without their
own limitations – namely ambiguity due to omitted details or
poor quality sketches. In the future, we are excited by avenues
for multimodal goal specification that can leverage the benefits
of language, sketches, and other modalities to jointly resolve
ambiguity from any single modality alone.

REFERENCES

[1] Jacob Andreas, Dan Klein, and Sergey Levine. Modular
multitask reinforcement learning with policy sketches. In
Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Re-
search, pages 166–175. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/andreas17a.html.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas
Schneider, Rachel Fong, Peter Welinder, Bob McGrew,
Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hind-
sight experience replay. In 31st Conference on Neural
Information Processing Systems (NIPS 2017), 2017.

[3] Brenna D Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57
(5):469–483, 2009.

https://proceedings.mlr.press/v70/andreas17a.html

[4] Christine M Barber, Robin J Shucksmith, Bruce Mac-
Donald, and Burkhard C Wünsche. Sketch-based robot
programming. In 2010 25th International Conference of
Image and Vision Computing New Zealand, pages 1–8.
IEEE, 2010.

[5] Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh.
Data quality in imitation learning. arXiv preprint
arXiv:2306.02437, 2023.

[6] Ayan Kumar Bhunia, Viswanatha Reddy Gajjala, Sub-
hadeep Koley, Rohit Kundu, Aneeshan Sain, Tao Xiang,
and Yi-Zhe Song. Doodle it yourself: Class incremental
learning by drawing a few sketches. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2293–2302, 2022.

[7] Ayan Kumar Bhunia, Subhadeep Koley, Amandeep Ku-
mar, Aneeshan Sain, Pinaki Nath Chowdhury, Tao Xiang,
and Yi-Zhe Song. Sketch2saliency: Learning to detect
salient objects from human drawings. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2733–2743, 2023.

[8] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, Pete Flo-
rence, Chuyuan Fu, Montse Gonzalez Arenas, Keerthana
Gopalakrishnan, Kehang Han, Karol Hausman, Alex
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil
Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey
Levine, Yao Lu, Henryk Michalewski, Igor Mordatch,
Karl Pertsch, Kanishka Rao, Krista Reymann, Michael
Ryoo, Grecia Salazar, Pannag Sanketi, Pierre Sermanet,
Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran,
Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Ste-
fan Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted
Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
Zitkovich. Rt-2: Vision-language-action models transfer
web knowledge to robotic control. In arXiv preprint
arXiv:2307.15818, 2023.

[9] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alexander Herzog, Jas-
mine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas
Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian,
Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-
Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina
Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jor-
nell Quiambao, Kanishka Rao, Michael S Ryoo, Grecia
Salazar, Pannag R Sanketi, Kevin Sayed, Jaspiar Singh,
Sumedh Sontakke, Austin Stone, Clayton Tan, Huong
Tran, Vincent Vanhoucke, Steve Vega, Quan H Vuong,
Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. RT-1: Robotics Transformer for Real-
World Control at Scale. In Proceedings of Robotics:
Science and Systems, Daegu, Republic of Korea, July
2023. doi: 10.15607/RSS.2023.XIX.025.

[10] Tim Brooks, Aleksander Holynski, and Alexei A Efros.
Instructpix2pix: Learning to follow image editing instruc-
tions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18392–
18402, 2023.

[11] Kaylee Burns, Tianhe Yu, Chelsea Finn, and Karol
Hausman. Robust manipulation with spatial features. In
CoRL 2022 Workshop on Pre-training Robot Learning,
2022.

[12] Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Aneeshan
Sain, Subhadeep Koley, Tao Xiang, and Yi-Zhe Song.
What can human sketches do for object detection? In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15083–15094,
2023.

[13] Pinaki Nath Chowdhury, Ayan Kumar Bhunia, Aneeshan
Sain, Subhadeep Koley, Tao Xiang, and Yi-Zhe Song.
Scenetrilogy: On human scene-sketch and its comple-
mentarity with photo and text. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10972–10983, 2023.

[14] Yuchen Cui, Scott Niekum, Abhinav Gupta, Vikash Ku-
mar, and Aravind Rajeswaran. Can foundation models
perform zero-shot task specification for robot manipula-
tion? In Learning for Dynamics and Control Conference,
pages 893–905. PMLR, 2022.

[15] Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya
Shivakumar, Percy Liang, and Dorsa Sadigh. No, to the
right: Online language corrections for robotic manipula-
tion via shared autonomy. In Proceedings of the 2023
ACM/IEEE International Conference on Human-Robot
Interaction, pages 93–101, 2023.

[16] Michael Danielczuk, Andrey Kurenkov, Ashwin Bal-
akrishna, Matthew Matl, David Wang, Roberto Martı́n-
Martı́n, Animesh Garg, Silvio Savarese, and Ken Gold-
berg. Mechanical search: Multi-step retrieval of a target
object occluded by clutter. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pages 1614–
1621. IEEE, 2019.

[17] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mar-
iano Phielipp. Goal-conditioned imitation learning. Ad-
vances in neural information processing systems, 32,
2019.

[18] Aditya Ganapathi, Priya Sundaresan, Brijen Thanan-
jeyan, Ashwin Balakrishna, Daniel Seita, Jennifer
Grannen, Minho Hwang, Ryan Hoque, Joseph E Gon-
zalez, Nawid Jamali, et al. Learning dense visual corre-
spondences in simulation to smooth and fold real fabrics.
In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 11515–11522. IEEE, 2021.

[19] Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu,
Montserrat Gonzalez Arenas, Kanishka Rao, Wenhao Yu,
Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, et al.
Rt-trajectory: Robotic task generalization via hindsight
trajectory sketches. arXiv preprint arXiv:2311.01977,
2023.

[20] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1125–
1134, 2017.

[21] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler,
Frederik Ebert, Corey Lynch, Sergey Levine, and Chelsea
Finn. Bc-z: Zero-shot task generalization with robotic
imitation learning. In Conference on Robot Learning,
pages 991–1002. PMLR, 2022.

[22] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi
Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima
Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General
robot manipulation with multimodal prompts. arXiv
preprint arXiv:2210.03094, 2022.

[23] Siddharth Karamcheti, Suraj Nair, Annie S Chen,
Thomas Kollar, Chelsea Finn, Dorsa Sadigh, and Percy
Liang. Language-driven representation learning for
robotics. arXiv preprint arXiv:2302.12766, 2023.

[24] Subhadeep Koley, Ayan Kumar Bhunia, Aneeshan Sain,
Pinaki Nath Chowdhury, Tao Xiang, and Yi-Zhe Song.
Picture that sketch: Photorealistic image generation from
abstract sketches. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6850–6861, 2023.

[25] Zixing Lei, Yiming Zhang, Yuxin Xiong, and Siheng
Chen. Emergent communication in interactive sketch
question answering. arXiv preprint arXiv:2310.15597,
2023.

[26] Mengtian Li, Zhe Lin, Radomir Mech, Ersin Yumer, and
Deva Ramanan. Photo-sketching: Inferring contour draw-
ings from images. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 1403–
1412. IEEE, 2019.

[27] Rensis Likert. A technique for the measurement of
attitudes. Archives of Psychology, 1932.

[28] Corey Lynch and Pierre Sermanet. Language conditioned
imitation learning over unstructured data. arXiv preprint
arXiv:2005.07648, 2020.

[29] Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli
Ding, James Betker, Robert Baruch, Travis Armstrong,
and Pete Florence. Interactive language: Talking to robots
in real time. IEEE Robotics and Automation Letters,
2023.

[30] Lucas Manuelli, Wei Gao, Peter Florence, and Russ
Tedrake. kpam: Keypoint affordances for category-level
robotic manipulation. In The International Symposium
of Robotics Research, pages 132–157. Springer, 2019.

[31] Ethan Perez, Florian Strub, Harm De Vries, Vincent
Dumoulin, and Aaron Courville. Film: Visual reasoning
with a general conditioning layer. In Proceedings of the
AAAI conference on artificial intelligence, volume 32,
2018.

[32] David Porfirio, Laura Stegner, Maya Cakmak, Allison
Sauppé, Aws Albarghouthi, and Bilge Mutlu. Sketch-
ing robot programs on the fly. In Proceedings of the

2023 ACM/IEEE International Conference on Human-
Robot Interaction, HRI ’23, page 584–593, New York,
NY, USA, 2023. Association for Computing Machinery.
ISBN 9781450399647. doi: 10.1145/3568162.3576991.
URL https://doi.org/10.1145/3568162.3576991.

[33] Shuwen Qiu, Sirui Xie, Lifeng Fan, Tao Gao, Jungseock
Joo, Song-Chun Zhu, and Yixin Zhu. Emergent graphical
conventions in a visual communication game. Advances
in Neural Information Processing Systems, 35:13119–
13131, 2022.

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PMLR, 2021.

[35] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf
Lioutikov. Goal-conditioned imitation learning using
score-based diffusion policies. Robotics: Science and
Systems (RSS), 2023.

[36] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10684–10695, June
2022.

[37] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the
fourteenth international conference on artificial intelli-
gence and statistics, pages 627–635. JMLR Workshop
and Conference Proceedings, 2011.

[38] Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa
Dehghani, and Anelia Angelova. Tokenlearner: Adaptive
space-time tokenization for videos. Advances in Neural
Information Processing Systems, 34:12786–12797, 2021.

[39] Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang,
and Jeannette Bohg. Concept2robot: Learning manipu-
lation concepts from instructions and human demonstra-
tions. In Proceedings of Robotics: Science and Systems
(RSS), 2020.

[40] Irwin Sobel. An isotropic 3x3 image gradient operator.
Presentation at Stanford A.I. Project 1968, 1968.

[41] Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
International conference on machine learning, pages
6105–6114. PMLR, 2019.

[42] Faraz Torabi, Garrett Warnell, and Peter Stone. Be-
havioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[44] Yael Vinker, Yuval Alaluf, Daniel Cohen-Or, and Ariel
Shamir. Clipascene: Scene sketching with differ-

https://doi.org/10.1145/3568162.3576991

ent types and levels of abstraction. arXiv preprint
arXiv:2211.17256, 2022.

[45] Yael Vinker, Ehsan Pajouheshgar, Jessica Y Bo, Ro-
man Christian Bachmann, Amit Haim Bermano, Daniel
Cohen-Or, Amir Zamir, and Ariel Shamir. Clipasso:
Semantically-aware object sketching. ACM Transactions
on Graphics (TOG), 41(4):1–11, 2022.

[46] Kevin Zakka, Andy Zeng, Johnny Lee, and Shuran
Song. Form2fit: Learning shape priors for generalizable
assembly from disassembly. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages
9404–9410. IEEE, 2020.

[47] Lvmin Zhang and Maneesh Agrawala. Adding condi-
tional control to text-to-image diffusion models. arXiv
preprint arXiv:2302.05543, 2023.

APPENDIX

In this section, we provide further details on the visual
goal representations RT-Sketch sees at train and test time
(Appendix A), qualitative visualizations of experimental roll-
outs (Appendix A), limitations (Appendix A) of RT-Sketch,
as well as the interfaces used for data annotation, evaluation,
and human assessment (Appendix A).

Since the main bottleneck to training a sketch-to-action
policy like RT-Sketch is collecting a dataset of paired tra-
jectories and goal sketches, we first train an image-to-sketch
translation network T mapping image observations oi to
sketch representations gi, discussed in Section III. To train
T , we first take a pre-trained network for sketch-to-image
translation [26] trained on the ContourDrawing dataset of
paired images and edge-aligned sketches (Fig. 5). This dataset
contains L(i) = 5 crowdsourced sketches per image for 1000
images. By pre-training on this dataset, we hope to embed a
strong prior in T and accelerate learning on our much smaller
dataset. Next, we finetune T on a dataset of 500 manually
drawn line sketches for RT-1 robot images. We visualize a
few examples of our manually sketched goals in Fig. 6 under
‘Line Drawings’.

Fig. 5: ContourDrawing Dataset: We visualize 6 samples from the Contour-
Drawing Dataset from [26]. For each image, 5 separate annotators provide an
edge-aligned sketch of the scene by outlining on top of the original image. As
depicted, annotators are encouraged to preserve main contours of the scene,
but background details or fine-grained geometric details are often omitted. Li
et al. [26] then train an image-to-sketch translation network T with a loss that
encourages aligning with at least one of the given reference sketches (Eq. (2)).

Notably, while we only train T to map an image to a
black-and-white line sketch ĝi, we consider various augmen-
tations A on top of generated goals to simulate sketches with
varied colors, affine and perspective distortions, and levels
of detail. Fig. 6 visualizes a few of these augmentations,
such as automatically colorizing black-and-white sketches by
superimposing a blurred version of the original RGB image,
and treating an edge-detected version of the original image as
a generated sketch to simulate sketches with a lot of details.
We generate a dataset for training RT-Sketch by ‘sketchifying’
hind-sight relabeled goal images via T and A.

Although RT-Sketch is only trained on generated line
sketches, colorized line sketches, edge-detected images, and

goal images, we find that it is able to handle sketches of
even greater diversity. This includes non-edge aligned free-
hand sketches and sketches with color infills, like those shown
in Fig. 6.

A. Alternate Image-to-Sketch Techniques

The choice of image-to-sketch technique we use is critical to
the overall success of the RT-Sketch pipeline. We experiment
with various other techniques before converging on the above
approach.

Recently, two recent works, CLIPAsso [45] and CLI-
PAScene [44] explore methods for automatically generating a
sketch from an image. These works pose sketch generation
as inferring the parameters of Bezier curves representing
”strokes” in order to produce a generated sketch with maximal
CLIP-similarity to a given input image. These methods per-
form a per-image optimization to generate a plausible sketch,
rather than a global batched operation across many images,
limiting their scalability. Additionally, they are fundamentally
more concerned with producing high-quality, aesthetically
pleasing sketches which capture a lot of extraneous details.

We, on the other hand, care about producing a minimal but
reasonable-quality sketch. The second technique we explore
is trying the pre-trained Photosketching GAN [26] on internet
data of paired images and sketches. However, this model
output does not capture object details well, likely due to not
having been trained on robot observations, and contains irrele-
vant sketch details. Finally, by finetuning this PhotoSketching
GAN on our own data, the outputs are much closer to real,
hand-drawn human sketches that capture salient object details
as minimally as possible. We visualize these differences in
Fig. 7.

To further interpret RT-Sketch’s performance, we provide
visualizations of the precision metrics and experimental roll-
outs. In Fig. 8, we visualize the degree of alignment RT-Sketch
achieves, as quantified by the pixelwise distance of object
centroids in achieved vs. given goal images. In Fig. 9, Fig. 10,
Fig. 11, and Fig. 13, we visualize each policy’s behavior for
H1, H2, H3 and H4, respectively. Fig. 12 visualizes the four
tiers of difficulty in language ambiguity that we analyze for
H4.

While RT-Sketch is performant at several manipulation
benchmark skills, capable of handling different levels of
sketch detail, robust to visual distractors, and unaffected by
ambiguous language, it is not without failures and limitations.

In Fig. 15, we visualize the failure modes of RT-Sketch. One
failure mode we see with RT-Sketch is occasionally re-trying
excessively, as a result of trying to align the scene as closely
as possible. For instance, in the top row, Rollout Image 3, the
scene is already well-aligned, but RT-Sketch keeps shifting the
chip bag which causes some misalignment in terms of the chip
bag orientation. Still, this kind of failure is most common with
RT-Goal-Image (Table I), and is not nearly as frequent for RT-
Sketch. We posit that this could be due to the fact that sketches
enable high-level spatial reasoning without over-attending to
pixel-level details.

Fig. 6: Visual Goal Diversity: RT-Sketch is capable of handling a variety of visual goals at both train and test time. RT-Sketch is trained on generated and
augmented images like those shown on the right below ’Generated Goals’. But it can also interpret free-hand, line sketches, and colored sketches at test time
such as those on the left below ’Manually Sketched Goals’.

Fig. 7: Alternate Image-to-Sketch Techniques

One consequence of spatial reasoning at such a high level,
though, is an occasional lack of precision. This is noticeable
when RT-Sketch orients items incorrectly (second row) or
positions them slightly off, possibly disturbing other items
in the scene (third row). This may be due to the fact that
sketches are inherently imperfect, which makes it difficult to
reason with such high precision.

Finally, we see that RT-Sketch occasionally manipulates the
wrong object (rows 4 and 5). Interestingly, we see that a
fairly frequent pattern of behavior is to manipulate the wrong
object (orange in row 4) to the right target location (near
green can in row 4). This may be due to the fact that the
sketch-generating GAN has occasionally hallucinated artifacts
or geometric details missing from the actual objects. Having
been trained on some examples like these, RT-Sketch can
mistakenly perceive the wrong object to be aligned with an
object drawn in the sketch. However, the sketch still indicates
the relative desired spatial positioning of objects in the scene,
so in this case RT-Sketch still attempts to align the incorrect
object with the proper place.

Finally, the least frequent failure mode is manipulating the
wrong object to the wrong target location (i.e. opening the

wrong drawer handle). This is most frequent when the input
is a free-hand sketch, and could be mmitigated by increasing
sketch detail (Table II).

Fig. 8: Spatial Precision Visualization: We visualize four trials of RT-Sketch on the Move Near skill, along with the measured spatial precision in terms of
RMSE. To evaluate spatial precision, we have a human annotator annotate the frame that is visually most aligned, and then keypoints for the object that was
moved in this frame and in the provided reference goal image. For each of the four trials, we visualize the rollout frames until alignment is achieved, along
with the labeled object centroids and the offset in achieved vs. desired positions. The upper right example shows a failure of RT-Sketch in which the apple
is moved instead of the chip bag, incurring a high RMSE. These visualizations are intended to better contextualize the numbers from Table I.

Fig. 9: H1 Rollout Visualization: We visualize the performance of RT-1, RT-Sketch, and RT-Goal-Image on two skills from the RT-1 benchmark (upright
and knock). For each skill, we visualize the goal provided as input to each policy, along with the policy rollout. We see that for both skills, RT-1 obeys the
semantic task at hand by successfully placing the can upright or sideways, as intended. Meanwhile, RT-Sketch and RT-Goal-Image struggle with orienting the
can upright, but successfuly knock it sideways. Interestingly, both RT-Sketch and RT-Goal-Image are able to place the can in the desired location (disregarding
can orientation) whereas RT-1 does not pay attention to where in the scene the can should be placed. This is indicated by the discrepancy in position of the
can in the achieved versus goal images on the right. This trend best explains the anomalous performance of RT-Sketch and RT-Goal-Image in perceived Likert
ratings for the upright task (Fig. 3), but validates their comparably higher spatial precision compared to RT-1 across all benchmark skills (Table I).

Fig. 10: H2 Rollout Visualization: For the open drawer skill, we visualize four separate rollouts of RT-Sketch operating from different input types. Free-hand
sketches are drawn without outlining over the original image, such that they can contain marked perspective differences, partially obscured objects (drawer
handle), and roughly drawn object outlines. Line sketches are drawn on top of the original image using the sketching interface we present in Appendix Fig. 16.
Color sketches merely add color infills to the previous modality, and Sobel Edges represent an upper bound in terms of unrealistic sketch detail. We see that
RT-Sketch is able to successfully open the correct drawer for any sketch input except the free-hand sketch, without a noticeable performance gain or drop.
For the free-hand sketch, RT-Sketch still recognizes the need for opening a drawer, but the differences in sketch perspective and scale can occasionally cause
the policy to attend to the wrong drawer, as depicted.

Fig. 11: H3 Rollout Visualization: We visualize qualitative rollouts for RT-Sketch and RT-Goal-Image for 3 separate trials of the move near skill subject to
distractor objects. In Column 2, we highlight the relevant non-distractor objects that the policy must manipulate in order to achieve the given goal. In Trial
1, we see that RT-Sketch successfuly attends to the relevant objects and moves the blue chip bag near the coke can. Meanwhile, RT-Goal-Image is confused
about which blue object to manipulate, and picks up the blue pepsi can instead of the blue chip bag (A). In Trial 2, RT-Sketch successfully moves an apple
near the fruit on the left. A benefit of sketches is their ability to capture instance multimodality, as any of the fruits highlighted in Column 2 are valid options
to move, whereas this does not hold for an overspecified goal image. RT-Goal-Image erroneously picks up the green chip bag (B) instead of a fruit. Finally,
Trial 3 shows a failure for both policies. While RT-Sketch successfully infers that the green can must be moved near the red one, it accidentally knocks over
the red can (C) in the process. Meanwhile, RT-Goal-Image prematurely drops the green can and instead tries to pick the green chip bag (D).

Fig. 12: H4 Tiers of Difficulty: To test H4, we consider language instructions that are either ambiguous due the presence of multiple similar object instances
(T1), are somewhat out-of-distribution for RT-1 (T2), or are far out-of-distribution and difficult to specify concretely without lengthier descriptions (T3). Each
image represents the ground truth goal image paired with the task description.

Fig. 13: H4 Rollout Visualization (T1 as visualized in Fig. 12): One source of ambiguity in language descriptions is mentioning an object for which
there are multiple instances present. For example, we can easily illustrate three different desired placements of an orange in the drawer via a sketch, but an
ambiguous instruction cannot easily specify which orange is relevant to pick and place. In all rollouts, RT-Sketch successfully places the correct orange in the
drawer, while RT-1 either picks up the wrong object (A), fails to move to the place location (B), or knocks off one of the oranges (C). Although in this case,
the correct orange to manipulate could easily be specified with a spatial relation like pick up the ⟨ left/middle/right ⟩ orange, we show below in Appendix
Fig. 14 that this type of language is still out of the realm of RT-1’s semantic familiarity.

Fig. 14: H4 Rollout Visualization (T2-3 as visualized in Fig. 12): For T2, we consider language with spatial cues that intuitively should help the policy
disambiguate in scenarios like the oranges in Fig. 13. However, we find that RT-1 is not trained to handle such spatial references, and this kind of language
causes a large distribution shift leading to unwanted behavior. Thus, for the top rollout of trying to move the chip bag to the left where there is an existing
pile, RT-Sketch completes the skill without issues, but RT-1 attempts to open the drawer instead of even attempting to rearrange anything on the countertop
(A). For T3, we consider language goals that are even more abstract in interpretation, without explicit objects mentioned or spatial cues. Here, sketches are
advantageous in their ability to succinctly communicate goals (i.e. visual representation of a rainbow), whereas the corresponding language task string is far
too underspecified and OOD for the policy to handle (B).

Fig. 15: RT-Sketch Failure Modes

Fig. 16: Sketching UI: We design a custom sketching interface for manually collecting paired robot images and sketches with which to train T , and for
sketching goals for evaluation. The interface visualizes the current robot observation, and provides the ability to draw on a digital screen with a stylus. The
interface supports different colors and erasure. We note that intuitively, drawing on top of the image is not an unreasonable assumption to make, since current
agent observations are far more readily available than a goal image, for instance. Additionally, the overlay is intended to make the sketching interface easy
for the user to provide, without having to eyeball edges for the drawers or handles blindly.

Fig. 17: Assessment UI: For all skills and methods, we ask labelers to assess semantic and spatial alignment of the recorded rollout relative to the ground
truth semantic instruction and visual goal. We show the interface above, where labelers are randomly assigned to skills and methods (anonymized). The results
of these surveys are reported in Fig. 3.

	Introduction
	Related Work
	Sketch-Conditioned Imitation Learning
	Image-to-Sketch Translation
	RT-Sketch

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Appendix
	Alternate Image-to-Sketch Techniques

