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ABSTRACT
Data processing systems have evolved significantly over the last
decade, driven by large trends in hardware and software, the ex-
ponential growth of data, and new and changing use cases. At
Meta (and elsewhere), the various data systems composing the data
lakehouse had historically evolved organically and independently,
leading to data stack fragmentation, and resulting in work duplica-
tion, subpar system performance, and inconsistent user experience.
This paper describes how we transformed the legacy data lake-
house stack at Meta to adapt to the new realities through a large
cross-organizational effort called Shared Foundations. This pro-
gram promotes a compositional approach based on the principles
of reusable components, deduplicated systems, and common and
consistent APIs. The Shared Foundations effort has resulted in a
more modern data architecture at Meta – one that offers better per-
formance, richer features, higher engineering velocity, and a more
consistent user experience, setting up the data lakehouse stack at
Meta for faster innovation in the future.

1 INTRODUCTION
The requirements for large-scale data lakehouses [25] have evolved
in the last decade. Apart from the exponential data growth fueled
by new products, increasingly complex requirements, and sheer
organic growth, the demand for fresher data and faster queries,
essential to lowering the time to insight, has also increased. Data
models have become more complicated, resulting in most tables
containing complex data types such as structs, maps, and arrays.
In parallel, query complexity has also grown; it is increasingly
common to find queries with a large number of stages, iterative
graph queries, time series analysis, and complex business logic,
especially in data pipelines.

Other trends in hardware and software have also impacted the
architecture of modern data lakehouses. The death of Moore’s law
for CPUs has raised the importance of horizontal scalability and
elastic computing, making resource fungibility across compute en-
gines a prerequisite. Because the power to drive these CPUs is
scarce, power efficiency became fundamental and led to numerous
efforts such as native code optimizations leveraging SIMD instruc-
tions, GPUs, and other special purpose hardware co-optimized with
software. With faster networks and larger storage units, storage
disaggregation became commonplace and the architecture of choice
of modern data warehouses [4] [16]. Lastly, the recent emergence
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of machine learning workloads has developed a new set of trends
in terms of data volume, complexity, and unusual access patterns
[26].

Meanwhile, Meta’s data stack had only evolved incrementally
over the last decade. This has resulted in a fragmented stack which
was difficult to maintain and evolve, composed of almost a dozen
SQL dialects, multiple engines targeting similar workloads (each
with their own quirks), and numerous copies of the same data in
different locations and formats. The lack of standardization and
reusable components not only increased the operational burden
on engineering teams, but ultimately slowed down innovation. It
also impacted our users, who had to interact with engines expos-
ing different SQL dialects, inconsistent semantics, and presenting
suboptimal performance.

To address these challenges, we started a cross-organizational
effort involving dozens of engineering teams called Shared Founda-
tions, promoting a compositional approach based on the principles
of reusable components, consolidated engines, common APIs, and
consistent standards. By consolidating compute engines, converg-
ing storage libraries and metadata, and unifying SQL dialects and
execution engines, the Shared Foundations effort has created a more
modern data architecture; one that offers better performance, richer
features, higher engineering velocity and a more consistent user
experience. Ultimately, it made Meta’s data lakehouse stack more
adaptable to current and future trends, promoting faster innovation.

In this paper, we make the following contributions:

• We describe how new usage patterns and trends in hardware
and software throughout the last decade have driven organic
changes to our exabyte-scale data lakehouse, resulting in a
data stack that was difficult to enhance and maintain.

• We present the historical context and main design principles
behind one of the largest data lakehouses in the world and
characterize the systems comprising it.

• Wemotivate the importance of a horizontal large-scale effort
across different engines, focusing on reusability, unification,
and consistency, hoping to further motivate the need for
research on composability of data management systems.

• We detail the Shared Foundations program and the differ-
ent efforts under its umbrella. We also highlight how real-
world hyperscalar compute engines, storage libraries, SQL
dialects, and execution engines were consolidated and made
consistent to users, which in turn made our engineering
organization more efficient and effective.

2 BACKGROUND
Meta’s data stack has been incrementally built over the last two
decades. Starting with Hive, a system created and open sourced
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Figure 1: High-level data flow: Meta’s data lakehouse stack.

by Meta in 2010, the data warehouse quickly grew from tens to
hundreds of petabytes [14], and more recently to multiple exabytes.
The high level schematic of the stack is shown in Figure 1. Hive was
built on several principles which are still mostly relevant today:

• Data, metadata and compute are disaggregated, allowing
each to scale independently.

• Data is stored on a distributed file system, HDFS, which
allows data to scale horizontally independent of compute,
and provides increased resilience. Meta has in recent years
replaced HDFS with its own file system, Tectonic [19], which
provides several enhancements such as greater scalability,
better isolation, smarter encodings and better support for
SSDs.

• Metadata is stored in MySQL. Hive Metastore provides par-
titioning mechanisms to optimize data organization. Over
time, Meta’s metadata size has grown exponentially, requir-
ing us to add support for sharded MySQL for storage. Tradi-
tionally, sharding is done on a per namespace basis.

• Data format is columnar. The original columnar format, RC-
File, was enhanced to create ORC [11]. ORC has several
advanced features like multiple encodings, NULL support,
flexible compression levels and support for complex types
such as arrays and maps. Meta uses an internal variant of
ORC, named DWRF [10], which has additional features such
as better support for large maps and encryption.

• Multiple compute engines can run on the same data, since
compute and storage are disaggregated. This has allowed
us to evolve the Compute space independently, and many
engines can run on the Hive Warehouse, such as Spark [7]
(which replaced the original Hive engine), Presto [23] and
DiGraph (Meta’s deployment of Giraph [8]).

However, limitations of the Hive architecture led to the develop-
ment of many other systems over time. Some of these limitation
were:

• No support for stream processing. This resulted in vari-
ous streaming systems being built over the years, notably
Puma [5]. These systems typically were not well integrated
with Hive.

• No support for real time data ingestion into Hive. This
resulted in systems like Scuba [1], which was originally built

for log analytics at scale and hence lacks support for accurate
results or complex queries, to be (ab)used for analytics. Scuba
is written in C++, has its own SQL dialect, and uses its own
file format and local storage instead of Hive.

• Programming language divergence.Most of the DI stack
(Hive, the engines running on it, Puma, etc) was written in
Java; however, the majority of Meta uses C++, e.g, Machine
Learning systems, Tectonic, RocksDB, and many others. Java
is also not a primarily supported language inside Meta [13].
This resulted in new engines such as Scuba and Cubrick [20]
being required to rebuild many core components in C++,
such as the execution primitives (e.g, functions and opera-
tors), codecs for reading and writing data formats such as
ORC, and even developing their own file formats. The lack
of reusable components and programing language conver-
gence resulted in duplicate implementations, and increased
maintenance burden.

• Poor query latency. The Hive engine was too slow for
interactive analytics. This resulted in multiple new engines
such as Presto, Scuba, Raptor and Cubrick trying to address
the interactive analytics space. Some were written in Java
and some in C++, resulting in fragmentation. Further, these
engines, even when written in the same language (e.g. Scuba
and Cubrick, or Presto and Spark), did not share any code
or components, because of various historical reasons. As a
particularly egregious example, Spark and Presto both read
and wrote the same ORC format stored on Hive, but used
completely different libraries for interacting with file system
and Metastore, encoding and decoding ORC files, and even
decompressing the data! Similar patterns were also found in
the streaming and batch processing worlds.

• Inefficient I/O Usage. Hive data is traditionally stored in
hard disks in HDFS (later, Tectonic) storage nodes. Fetching
data from HDD over the network is too slow for many inter-
active analytics scenarios. Thus, many interactive engines
(Raptor, Cubrick, Scuba) were designed with co-located com-
pute and storage, where data is required to be pre-loaded into
local SSD or memory for querying. This resulted in further
storage fragmentation and data duplication, and stranded
resources.

In that landscape, the widespread fragmentation made the Meta
data lakehouse stack difficult to maintain and evolve. There were
half a dozen different SQL dialects, three implementations of Meta-
store client and ORC codecs, about a dozen different engines tar-
geting similar workloads, and many copies of the same data in
different locations and formats. The lack of standardization and
reusable components not only increased the operational burden in
the engineering teams, but ultimately slowed down innovation. It
also impacted our users, who had to interact with engines expos-
ing different SQL dialects, inconsistent semantics and suboptimal
latency.

3 SHARED FOUNDATIONS
To address the challenges described above, we started a cross-
organizational effort called Shared Foundations, with the purpose
of re-architecting our data lakehouse stack. Shared Foundations is a
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multi-year program involving dozens of engineering teams within
and outside of the Data Infrastructure organization, and hundreds
of engineers throughout Meta. It is based on the following core
principles:

• Fewer systems: If different systems targeting the same set
of use cases with overlapping functionality are available,
they should be consolidated into a single system. For ex-
ample, directionally, there should exist a single compute
engine targeted to each of the following spaces: interactive,
batch, streaming and machine learning. Each of these sys-
tems should be best-of-breed and provide a superset of the
functionality available with the fragmented systems pre-
consolidation. During this process, any residual data or du-
plicated pipelines should also be removed.

• Shared components: To avoid the one-size-fits-all issue, if
use cases and requirements are indeed distinct (e.g, batch
and interactive query processing), different compute engines
could still be provided. For these cases, there is a strong focus
on composability and on reusing as many components as
possible across the different layers of the stack. For example,
there is no reason for the storage encodings or formats to
be different for interactive and batch engines.

• Consistent APIs:Users often have to interact with different
engines to get their job done. If engines expose consistent
APIs, it lowers the learning curve for users, making them
more productive. Similarly, consistent APIs make integration
of components easier, thus promoting modularization and
reusability.

The advantages of these principles were three-fold:
• Engineering efficiency: More engineers could work on
each of these (smaller number) of systems and components.
This reduces duplication, prevents us from re-inventing the
wheel, consolidates domain-specific knowledge in fewer spe-
cialized teams, and ultimately enables our engineering orga-
nization to be more efficient and move faster.

• Faster innovation: Having fewer systems to maintain re-
duces operational burden, and allows engineering teams to
focus on new features, optimizations and other enhance-
ments, favoring innovation.

• Better user experience: Users can now expect consistent
syntax, semantics and features across these systems, reduc-
ing their learning curve and increasing productivity. Users
can also reap the benefits from faster innovation, such as
more features and better performance.

The Shared Foundations effort is organized in a few major con-
vergence areas, namely: storage, formats, metadata, execution, lan-
guage and engine. Figure 2 illustrates the mapping of the layers
to the scope, challenges, desired end state and projects, which are
detailed in the following subsections.

3.1 Compute Engine Convergence
The heavily fragmented compute engine ecosystem at Meta, result-
ing from decades of organic development, was one of the earlier
challenges faced in our convergence effort. Multiple engines aimed
at very similar spaces were available, such as Presto, Raptor, Cubrick
and Scuba for interactive SQL querying; Presto and Spark for batch
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Figure 2: Stack layers, challenges, end state & projects.

SQL execution; and Puma, Stylus, XStream, and MRT for stream
processing. The subsections below detail the convergence efforts
for interactive (3.1.1), batch (3.1.2) and streaming (3.1.3) engines.

3.1.1 Interactive Engine Convergence. The ideal interactive engine
would have the best-of-breed features from Presto, Raptor, Cubrick
and Scuba. Essentially, the converged engine should (a) provide full
SQL support, including complex queries and data models, (b) be
able to operate directly on the lakehouse data without additional
copies, (c) provide low query latency, driven by having the majority
of the data in memory or local SSD, and (d) have support for real
time data.

The convergence effort was based on Presto, as the system that
provided most of the properties above, and the performance gap be-
tween Presto and other existing systems was bridged through affin-
ity and local caching. By introducing smart hierarchical caching,
and therefore keeping the most frequently used data and metadata
in the local memory and SSD of the workers and the coordinator, we
achieved an order of magnitude speedup for most common query
patterns [17]. This speedup met or exceeded the performance of
existing systems, on less hardware.

Migration Process: Many interactive analytic use cases are
built around general purpose visualization and dashboarding tools.
For these cases, which were targeted for migration first, merely
adding the capability of generating SQL according to the target
system was sufficient. For the long tail of remaining use cases (other
custom built tools), the superior performance and set of capabilities
were often sufficient to motivate users to migrate their queries
and tools to Presto. Moreover, Data Infrastructure engineers also
engaged with users to motivate and support the migration based
on ROI: larger use cases that allowed a larger portion of the old
system to be deprecated were targeted first.

When migrating queries to a new engine and dialect, not only
syntactic incompatibilities were addressed, but also the different
function packages (by mapping to functions available in Presto)
and system capabilities. Fortunately, Presto has proven to be a
more flexible engine and allowed all user queries to be mapped to a
supported Presto query. Lastly, considering that the data previously
being loaded into Raptor, Cubrick, and Scuba analytic tables was
already generated in the lakehouse (and only then moved to these
systems), data migration was not an issue; in fact, it allowed many
ETL pipelines to be simplified and be made more reliable.
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The entire migration effort took over two years. At the end of
the migration, Raptor and Cubrick were completely deprecated,
eliminating two large systems and several hundred thousand lines
of code. Several analytic use cases running on Scuba were also
migrated to Presto, allowing Scuba to focus on the intended log an-
alytics and monitoring use cases. Beyond reducing the operational
load of maintaining three additional systems, several thousand
machines were also saved in the process.

Near Real Time Data: Another important aspect of storage,
particularly for interactive analytics use cases, is the availability of
near real time data. While real time ingestion is a common feature
in most data lakehouses, such as BigQuery [16], Databricks [25]
and Snowflake [6], the Meta data lakehouse had been restricted to
batch data because of the lack of disaggregated storage in some
interactive analytic engines, and necessary features in Metastore.

With Presto supporting interactive queries directly on Hive data,
it became possible to expose the real time data for querying as it
was imported into the lakehouse. FBETL (Meta’s ingestion system),
already supported continuous ingestion of log data. However, query
engines did not have access to this data since partitions were only
registered into Metastore once all the data for that partition was
available, which tended to be based on hourly or daily boundaries.

To address this issue, an additional partition state was introduced
in Metastore (“open”), and partitions are now registered as soon
as data starts arriving. Presto is now able to query data immedi-
ately upon landing for ad-hoc analysis and dashboarding, though
batch pipelines continue to rely on the “closed” partition signal to
ensure they always run on complete datasets. This design allows
the same datasets to be consumed by real-time queries as well as
batch pipelines, avoiding cumbersome migrations. Finally, we also
strengthened the ingestion commit protocol to ensure exactly-once
data delivery for real-time data.

The near real time ingestion feature has already been enabled
in numerous datasets in the lakehouse, providing data freshness in
the order of a few minutes - from logging to being queryable.

Metadata Improvements: An important aspect of evolving
metadata for Presto was about performance and improving cachea-
bility of Metadata. Hive Metastore already leveraged memcache
to reduce latency of MySQL accesses, but this metadata was not
cacheable on the client side without relaxing consistency guaran-
tees in the event of updates. We rebuilt the metadata layer and APIs
to introduce the concept of versions for each piece of metadata that
mutates in the event of any update. Presto, in its turn, introduced
metadata caching leveraging this versioning information, vastly
improving metadata latency for repeated queries.

3.1.2 Batch Engine Convergence. AtMeta, a large number of offline
analytics use-cases discretize (or batch) the data into static data sets,
commonly using hourly, daily, or monthly intervals, and process
them in a time-agnostic manner. These queries, typically referred to
as batch queries, are often automatically scheduled once their data
and upstream pipeline dependencies are ready (e.g., input partitions
or parent jobs), and start execution as soon as idle resources are
available in the shared resource pool. While users do not always
expect a batch job to finish immediately (in contrast to interactive
queries), there are implicit expectations around when the output

tables should land. As a result, batch query processing engines often
need to strike the right balance between throughput and latency.

Meta created the Hive engine for all batch processing in late
2000s. Hive’s SQL dialect (HiveQL) was primarily motivated by ex-
tensibility; it supported user-defined functions (UDFs, UDAFs, and
UDTFs) implemented in Java, and allowed users to embed custom
map-reduce scripts in C++, Python, and PHP using a row-based
streaming interface. These extensions made the HiveQL dialect
very flexible and it quickly gained user adoption. However, as a
result of organic evolution, these extensions were ad-hoc and not
standards compliant.

Subsequently, when Presto was built, we decided to build a
cleaner standards compliant SQL dialect (henceforth referred to as
PrestoSQL). Farther down the road, when Hive was replaced by
Spark SQL [3], we decided to keep the HiveQL-compliant dialect to
accelerate the migration process. However, given Presto’s higher
performance, many batch pipelines were also migrated to Presto.
But at the same time, Presto’s streaming architecture proved to be
insufficiently resilient to machine failures and most of the larger
longer running pipelines gravitated towards Spark due to its supe-
rior resilience characteristics, including a far more scalable shuffle
implementation [9]. Thus, Meta ended up in a situation where we
had two engines with two different/incompatible dialects, and no
one engine had the required set of capabilities to run all workloads.
To further complicate matters, because Spark and Presto have dif-
ferent resource models, there was no machine fungibility, and we
had to provision batch capacity separately for Presto and Spark.

We decided to solve this problem through the principles of com-
ponentization. Specifically, we decided to marry the scalability of
the Spark engine with the standards compliant SQL dialect from
Presto. The result was Presto on Spark [12]. Presto on Spark achieves
this by refactoring the Presto front-end (parser, analyzer, optimizer,
planner) and backend (evaluation and I/O) libraries and embedding
these in the Spark driver and worker respectively. By running the
exact same code on the front-end and back-end, Presto on Spark
guarantees 100% compatibility with PrestoSQL, allowing the user
to seamlessly move from interactive to ad-hoc to batch use cases
without needing to rewrite their queries. At the same time, because
it runs on the Spark RDD runtime and uses Meta’s scalable Cosco
shuffle infrastructure, the scalability and resilience benefits of Spark
are leveraged (notably, fine-grained task retries), allowing Presto
on Spark to run large-scale and long-running pipelines using the
same resource pools as Spark. A surprising side benefit of Presto
on Spark has been latency wins; as it turns out, many pipelines can
actually run faster on it if compared to traditional Presto, mainly
due to Presto on Spark’s ability to assign an increased number of
shuffle partitions to a given query.

Presto on Spark is currently in production and running thou-
sands of pipelines every day. The current production version of
Presto on Spark uses the Presto Java backend to quickly achieve
100% compatibility with Presto, but we have started work on replac-
ing it with Velox, our unified C++ execution engine described in
Section 3.4. Early results indicate large efficiency benefits. We are
also building tooling to translate existing HQL queries to PrestoSQL
to accelerate the migration process. Presto on Spark is fully open
source and available as part of the PrestoDB repository.
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3.1.3 Streaming Engine Convergence. Stream processing at Meta
has also evolved organically due to a variety of reasons, resulting
in a fragmented ecosystem [5]. The two main themes have been the
programming language (C++ vs. Java vs. PHP) and abstraction level
(low-level procedural vs. high-level SQL-like declarative API). The
legacy data lakehouse stack was composed of multiple streaming
engines: Puma (Java, declarative), Stylus (C++, low level), and others
which had different combinations of abstraction levels (declarative,
procedural) and implementation languages (C++, Java, PHP).

This fragmentation led to multiple challenges. For end users,
they needed to deal with inconsistent language designs and imple-
mentation details, e.g. some solutions were running under at-least
once semantics and some were at-most once. For developers, there
was a significant burden in maintaining multiple stacks, and any
new features like data management (e.g. lineage, schematization,
and privacy enforcement) needed to be implemented multiple times.
To get rid of the existing technical debt, and continue supporting
emerging needs like real-time machine learning, we built the next
generation of stream processing platform, called XStream [15].

While developing XStream, we made a number of design choices
along the way. At the beginning, the design was to provide a single
dataframe based declarative language, and underneath, use gen-
erated C++ code for expression evaluation and gluing predefined
template code to perform common transformations like joining and
window aggregation. While the dataframe language was highly
expressive, it was a non-trivial learning curve to end users and SQL
support was constantly asked. Compiling the generated code with
C++ templates was time-consuming, and compilation errors were
hard for users to understand.

We revised the design choices and decided to integrate with
CoreSQL (described in subsection 3.2), add stream processing ex-
tensions, and promote SQL as the main language experience. On
the other hand, we replaced code generation with Velox-based [21]
interpretive execution, which not only allowed us to leverage a
unified library for execution, but also provided performance bene-
fits. XStream today supports a wide variety of use cases from SQL,
machine learning, function as a service, and low-level system co-
ordination. It allowed us to deprecate Puma and therefore another
SQL dialect (PQL); further consolidation efforts are still ongoing.

3.2 SQL Dialect Convergence
One of the important decisions we had to make as we consolidated
our data stack was around SQL dialects. We had half a dozen vari-
ants of SQL being actively used at Meta: Presto SQL, HiveQL (in
Spark), PQL (Puma), Scuba SQL, Cubrick SQL and MySQL. This
made for a very steep learning curve for our users, and wasted a lot
of engineering effort while adding features to the various dialects.
We decided to whittle it down to two, MySQL and Presto SQL:

• MySQL is the only dialect for OLTP applications and is ubiq-
uitous at Meta, so moving off of it was impractical. However,
it has limitations regarding its type system and extensibility,
making it unsuitable for analytical applications.

• Among the analytical dialects, Presto’s SQL dialect was a
superior choice since it already had widespread adoption, a
clean standard-compliant design, and support for complex
types, rich features and extensibility. We adopted this for all

analytical applications, extended it for streaming, graph and
other use cases, and internally named it CoreSQL.

However, the difficulty then was around how to actually achieve
compatibility across the different engines.We looked at the industry
- Google had achieved this with ZetaSQL and this provided a good
framework. At a high level, we needed two components:

(1) A SQL parser and analyzer (the front-end), responsible for
parsing and analyzing queries, in addition to creating and
validating query plans. For this, we already had a Java im-
plementation (Presto), and a Python implementation (used
by developer tools). We decided to rewrite the Python im-
plementation in C++ for better performance and better inte-
gration with the C++ engines. Work is underway to further
simplify this into a single C++ library with Java bindings.

(2) A library of functions and operators (the backend) that pro-
vided a canonical implementation of the language. Again,
we already had the Java implementation from Presto, which
we decided to reuse to get us off the ground, but we also
started an ambitious effort to rewrite the execution engines
as a library in C++ from the ground up (described in subsec-
tion 3.4), for maximum performance and portability across
engines.

With both front-end and backend available as libraries, it became
easier for engines to adopt CoreSQL as the standard dialect across
engines. Thus, as we executed on the engine consolidation strategy,
the engines we consolidated on all converged on CoreSQL as the
only supported SQL dialect. Specifically, the new converged engines
for interactive analytics, batch (Presto on Spark) and Streaming
(XStream) all support CoreSQL as the only SQL dialect.

3.3 Storage Convergence
3.3.1 Converging codecs for ORC. Meta has traditionally used ORC
as the columnar format for the lakehouse. The internal ORC variant,
namedDWRF [10], has additional features such as better support for
large maps, and finer grained encryption. Though the new DWRF
fork allowed us to evolve the format faster, the organic growth
of compute engines within Meta using this format resulted in a
fragmented space for codec libraries. Two Java implementations of
these codecs existed, one for Spark and DiGraph, and one for Presto,
and one in C++ named DWIO, primarily used by ML applications.
Although these three libraries followed the DWRF standard, they
each had their own limitations.

While we wanted to move to a pure C++ execution mode for data
in the long run, we still needed to support Java for a few years. We
therefore executed on a two-pronged strategy. First, we converged
the Java codecs into one. We chose the Presto codec as the base
because of its higher performance and the fact that it was already
open sourced, then gradually incorporated any missing features
into it. We then switched over Spark, DiGraph and other systems
to use the new codec. Second, we refactored the DWIO library into
Velox, and added all the features and optimizations that had gone
into Java. This is now available in the open source as part of Velox.

3.3.2 A new ML optimized file format. While storing analytical
and ML tables together in the data lakehouse is beneficial from
a management and integration perspective (e.g. ML tables can be
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analyzed and processed using standard analytical query engines
such as Presto and Spark), it also imposes some unique challenges.
For example, it is increasingly common for ML tables to outgrow
analytical tables by up to an order of magnitude. ML tables are
also typically much wider, and tend to have tens of thousands of
features usually stored as large maps.

As we executed on our codec convergence strategy for ORC,
it gradually exposed significant weaknesses in the ORC format
itself, especially for ML use cases. The most pressing issue with the
DWRF format was metadata overhead; our ML use cases needed a
very large number of features (typically stored as giant maps), and
the DWRF map format, albeit optimized, had too much metadata
overhead. Apart from this, DWRF had several other limitations
related to encodings and stripe structure, which were very difficult
to fix in a backward-compatible way. Therefore, we decided to build
a new columnar file format that addresses the needs of the next
generation data stack; specifically, one that is targeted from the
onset towards ML use cases, but without sacrificing any of the
analytical needs.

The result was a new format we call Alpha. Alpha has several
notable characteristics that make it particularly suitable for mixed
Analytical nd ML training use cases. It has a custom serialization
format for metadata that is significantly faster to decode, especially
for very wide tables and deep maps, in addition to more modern
compression algorithms. It also provides a richer set of encodings
and an adaptive encoding algorithm that can smartly pick the best
encoding based on historical data patterns, through an encoding
history loopback database. Alpha requires fewer streams per col-
umn for many common data types, making read coalescing much
easier and saving I/Os, especially for HDDs. Alpha was written in
modern C++ from scratch in a way that allows it to be extended
easily in the future.

Alpha is being deployed in production today for several impor-
tant ML training applications and showing 2-3x better performance
than ORC on decoding, with comparable encoding performance
and file size.

3.4 Execution Engine Convergence
For any engine, the largest, most complex and the most perfor-
mance sensitive part is usually the execution engine library that
implements all data-intensive operations. The organic evolution
of Meta’s data lakehouse had created a fragmented ecosystem for
execution engines. It resulted in dozens of specialized implemen-
tations that shared little to nothing with each other, were written
in different programming languages, were maintained by different
engineering teams, and largely provided inconsistent semantics to
users. For example, an informal internal survey identified at least
12 different implementations of the simple string manipulation
function substr(), presenting different parameter semantics (0- vs.
1-based indices), null handling, and exception behavior.

In order to address these challenges, we created Velox [21], a
novel state-of-art C++ database acceleration library that provides
high-performance data processing components with the purpose
of unifying execution engines across different compute engines.
In the common usage scenario, Velox takes fully optimized query

plans as input, and performs the described computation using the re-
sources available in the local host. Velox democratizes optimizations
that were previously found only in individual engines, providing
a framework in which consistent semantics across engines can be
implemented. This reduces work duplication, promotes reusability,
and improves overall efficiency and consistency.

Velox is under active development, but it is already in various
stages of integration with more than a dozen data systems at Meta,
including Presto, Presto on Spark, XStream, FBETL (our system
for data ingestion into the Warehouse), Scribe, as well other inter-
nal ML systems for feature engineering and data preprocessing,
and even transactional systems. In addition to consistent seman-
tics and reusability benefits, Velox provides an implementation of
the CoreSQL dialect, and presents performance improvements of
up to an order of magnitude [21]. Although only recently open
sourced [22], Velox is already backed by a fast-growing community
composed of hundreds of companies and individual contributors.

4 FUTUREWORK
While many of the efforts in the sections above have landed in
production, significant work still remains to fully reap the benefits
of the new modernized architecture based on shared foundations.
Many of the initiatives have been fully completed (such as interac-
tive engine and ORC codec consolidation); others have landed in
production but need more work to reach full completion (e.g. Velox,
Presto on Spark, Alpha and XStream). We are also discussing the
feasibility of open sourcing more components of this architecture.

Furthermore, we continue to explore new areas where we can
apply the principles of Shared Foundations. One active area of inves-
tigation is on providing unified support for user-defined functions,
since UDF support APIs across engines are vastly incompatible
and provide inconsistent user experience. Extending the language
consolidation effort described for SQL, we are also exploring if
other non-sql APIs (dataframe interfaces and other DSLs, like Tor-
chArrow [18], Spark Dataset API and Pandas) could be unified, as
they become commonplace with the popularization of ML and data
science.

We believe componentization and composability to be the future
of data management. Further down the stack, we have started
researching whether query optimizers could be consolidated. While
the state-of-the-art suggests that optimizers are tightly intertwined
with an engine’s runtime and physical capabilities, we believe they
could (at least) share an underlying framework. Projects like Apache
Calcite [2] and Orca [24] give us precedent, but the extent in which
these components can be consolidated is still an open question.
Lastly, as Velox becomes the standard for execution within and
outside of Meta, we are exploring how Velox could be enhanced to
take advantage of hardware accelerators, allowing us to adapt all
of our engines at once as hardware evolves.

5 CONCLUSIONS
Over the last three years, we have implemented a generational leap
in the data infrastructure landscape at Meta through the Shared
Foundations effort. The result has been a more modern, composable
and consistent stack, with fewer components, richer features, con-
sistent interfaces, and better performance for the users of our stack,
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particularly, machine learning and analytics. We have deprecated
several large systems and removed hundreds of thousands of lines
of code, improving engineering velocity and decreasing operational
burden. We have open sourced several of the major components of
the new architecture, such as Velox, DWIO, Presto on Spark, Presto
with hierarchical caching, and TorchArrow, and are working closely
with the open source community to donate several enhancements
to existing open source projects, such as Arrow and ORC. This
journey is 1% finished.
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