TDD Revisited

Where it all went wrong - guidance on what to do instead

Who are you?

» Software Developer for more than 20 years

* Worked mainly for ISVs
* Reuters, SunGard, Misys, Huddle

* Worked for a couple of MIS departments
* DTI, Beazley

 Microsoft MVP for C#

* Interested in architecture and design
* Interested in Agile methodologies and practices

* No smart guys
 Just the guys in this room

BRIGHTER OME INTRO TUTORIALS CONCEPTS -

Welcome to Brignter

This project is a Command Processor & Dispatcher implementation with
support for task queues that can be used as a lightweight library.

It can be used for implementing and
architectural styles in .NET.

It can also be used in microservices architectures for decoupled

communication between the services

Agenda

 The Fallacies of TDD
* Clean Architecture
* Summary

The Fallacies of TDD

Fallacy

1: Developers write Unit Tests

DEfI n It I O n To wnlt test requ'wes test doubles, Lt's
how Yyou tsolate. The SUT must be able
to replace any depewdew05 wtth a test

double (a mock)

To isolate issues that may arise, e test case should be
tested independently. Substitutes such as method stubs,
mock objects, fakes, and test harnesses can be used to
assist testing a module in isolation.

n unit testing isolation becomes how
approach testing. We isolate one SUT
from another for defect Localization.
Oviginates with modules being https://en.wikipedia.org/wiki/Unit_testing

sepa mteLg tested.

Be I ief To do this, we etther have to design owr
class hierarchy before writing a test,
anod Rnow we will mock a call...

Need-driven Development [is a] variation on the test-driven
development process where code is written from the outside in
and all depended-on code is replaced by Mock Objects that'verify
the expected indirect outputs of the code being written.

The consequence here L{Emst .. or we need to stop when we hit

understand the details of the SUT not something outside our single
Just the contract... the details are "CSPOV“S"b"L"tH’ whew. Lmplementing ana
coupled to our test, we can't change replace it with a test double.

them without changing our tests. Meszaros, Gerard. xUnit Test Patterns

The Bl requirements here lead us

Expe rl e n Ce towards an 10C contatner over Poor

Mawn’s Bl because we have a graph of
dependencies to realize at rnntime

n a strongly-typed language this
means an inkerface stands-in for the
actual dependency and must be injected
Lnto our SUT.

When | look around now, | see a lot of people usimg\mocks»to
replace all their dependencies. My concern is that they will
begin to hit the Fragile Test issues that mocks present. Gerard
Meszaros identifies the issues we hit as two specific smells:
Overspecified Software and Behavior Sensitivity.

/
our tests should -focus own the contract, g-(we change how our code works, a Lot o-f
 but here they focus ow the tests may break — we say that our tests
Lmplementation, which makes them are sensitive to changes in the details.
hard to read as there Ls a Lot of setup
coole.

http://codebetter.com/iancooper/2007/12/19/mocks-and-the-dangers-of-overspecified-software/

Principle

1: Developers write Developer Tests

Observation

This is the only use of the phrase “unit
test” tn the book, Kent Ls referring here
to his use of the term “wnit test” tn
casuwal conversation or by Lmplication
from xunit tools.

| call them “unit tests,” but they don't
match the accepted definition of unit tests very well

-

Tests as defined in this book don't have
any of the characteristics of “unit tests”
as described tn our eavlier de-ﬁwi’ciow Kent Beck, TDD By Example
around isolatiow.

Observation

BY this we mean the contract that your
code exposes to other callers. Your test is
awn expression of that observable
behavior.

TDD is contract-first.

Refactoring s one of the three steps in
TDD. If You don't refactor much, it’s a
swmell Yyou are thinking too much
upfront.

/

Refactoring (noun): a change made to the internaf structure
of software to make it easier to understand and cheaper to
modify without changing its observable'behavior.

The key Ldea here: you can change your
code’s details without changing the
tests. That is refactoring. It's safe

because the behavior to preserve is https://martinfowler.com/bliki/DefinitionOfRefactoring.html
expressed by the test!

Observation

(w other words, when we change the
Lmplementation without changing the
contract of what is under test, thew the

tests don't change.

If the program’s behavior is stablefrom an observer’s
perspective,i10 tests should change.

TDD s a Contract-Flyst approach to
testing. Behavior in this context means
that contract.

https://medium.com/@kentbeck_7670/programmer-test-principles-d01c064d7934

O bse r\[at i on Ouvr tests are coupled to the contract

expressed bg the code

Kent Beck & v
@KentBeck

Tests should be coupled to the behavior of code and
decoupled from the structure of code. Seeing tests that
fail on both counts.

6:46 PM - Oc11, 2019 from San Francisco, CA - Twitter for iPhone

598 Retweets and comments 1.5K Likes

Owr tests should not coupte to the
metemew’catiow detatls L.e. via mocks

, https://twitter.com/KentBeck/status/1182714083230904320
that check detalls.

O bse rvatio n Tests should not use mocks to Lsolate the

SUT, <o theg are not untlt tests!lll

My personal style is | just don’t go very far down the mock
path... your test is completely coupled to the
implementation not the interface... of course you can’t
change Ing without breaking the tests

The consequence of using mocks to
observe the indirect outputs will be
coupling of tests to details...

Kent Beck https://www.youtube.com/watch?v=z9quxZslLcfo

https://www.youtube.com/watch?v=z9quxZsLcfo

The fundamental ‘Priwcipl,e of unit
testing.

Failure of a Unit Test shall implicate one and only one unit.
(A method, class, module, or package.)

Failure of a Programmer (or Developer) Test, under Test
Driven Development, implicates only the most recent
edit.

The fundamental principle of TDD
f P ple of https://wiki.c2.com/?ProgrammerTest

https://wiki.c2.com/?DeveloperTest

Use this name, or Programmer Tests, to
avold confusion with unit testing
Note that TDD is a process of discovery principles.

Test Driven’'Development produces Developer Tests. The

failure of'a test case implicates only the developer's most

recent ‘edit. This implies that developers don't need to use

Mock Objects to split all their code up into testable units.

And it implies a developer may always avoid debugging by
reverting that last edit.

Don't use mocks to isolate the SUT
whewn doing Developer Tests. It is a
different practice. Know which practice

You are using and its trade-offs https://wiki.c2.com/?UnitTest

Observation

l/O is the most common shared fixture Tests are isolated from each other. So
that we can run them tn parallel. This

leeeps them fast.

~

ct one another? Not at all.

N

reasown for Lnterference is
shared state, called shared fixture and we mock
shared fixture to allow tests to work i parallel.

How shouldthe running of tests

we also tend to mock /0 for:
Speed — tests should be fast!
Fragility — it can make tests fail

unexpectedly Kent Beck, TDD By Example

Fallacy

2: The trigger for a new test is a new function

Definition
A function has pre-conditions and post-
conditions, a test simply asserts that
for a givew set of pre-conditions, we get
the relevant post-conditions

Write a test that defines a function or improvements of a function

lmpLemew’catiow Ls smeLg the algorithm
to turn the Pre—cowditiows Linto the poSt-
conditlons

https://en.wikipedia.org/wiki/Test-driven_development

Be I iEf Testing ts about confirming the
behavior of our functions. we may

want to use tech V\iques like

Requires acceptance tests to confirm t}"“t thes,e parameterized testing to allow us to
functions whilst correct, produce behavior that ts easily vary input, test edge conditions
corvect overall. ete.

~~

The function is the System-Under-Test (SUT)

\ T

The desire to test methods on classes in languages Test Coverage of 100% cawn be achieved if
that proviode access control Leads to the gquestion of we test every method, and all the possible
how to test private wmethods. paths through that wethod.

EXpe rience If we returned because Lt has gowne red -

it Ls breaking — why has is broken? (s it
because the acceptance criteria or our
Lmplementation changed?

When we returnto our tests — it is often difficult to understand their
intent

\

A promise of TPD was executable
specifications. wWe would not need
documentation, because our tests would
document how to use our code through
clear examples. Yet in many cases our
tests are just confusing.

Principle

2: The trigger for a new test is a new behavior

Observation

whewn we add amounts in two different

CUVTENCLES
Thew we convert the result

We need to be able amounts in
two different currencies and convert the
result given a set of exchange rates.

a

Givew a set of exchange rates
Kent Beck, TDD By Example

O bse rvat i 0 N whew we structure owr test we can

represent GWT as the Four-Fold Test
(sSetup [Given], Exercise [when],
verifylThenl], Teardown - Meszaros

Givew the state of the world before the
test
we cawn also use Act, Arrange, Assert —
\ Bill wake

Given a set of exchange rates,
When | add two amounts in different currencies together,
\ Then | get a result in the first currency.

Whew | exercbse the behavior uwdem\

Thew we expect the following changes

GWT from BDD by Daniel Terhorst-North

http://dannorth.net/about/

Obse rvation This switceh is really about moving away from

understanding TPD as a technigue for testing, to a
contract first technique for exploring how an AP
solves requirements

/

| found the shift from thinking in tests to thinking in

behaviour so profound that | started to refer to TDD as
BDD, or behaviour- driven development/

At first BDD is just a nawme for TBD that doesn't
carry the confusion around testing.

Later BDD becowes a practice, with specification by
example tooling, Lifecycle. This is not about that
BDPDP.

https://dannorth.net/introducing-bdd/

Statement

what is the smallest change you could make to the

o)) SUT that expresses a change to the acceptance criteria
This is: the question that answers everything: what for a behavior? Test that.

test do | write next?

N

The next test you write in TDD is just the most
obvious step that you can make towards
implementing the requirement given by a use case

user story.

watt, if TPD captures requirements, what are

Acceptawce tests for? More own this Later. A USE cOSe oy UsSer storg tells us what a customer

needs us to build — the behavior that the system
should exhibit. The acceptance criteria for that drive
owy tests.

Observation

BY bmplication this must not be exported — public —
but be hidden — private — as it can't be part of the
contract. So it is already covered by the existing

tests.

Remember that greew phase is a transaction seript -
discovering the algorithm — so we have poor structure,
that emerges in refactoring

You do not write new tests if you introduce new
methods when refactoring to clean code.

This coulo be a new class too As long as it is a detail \
of refactoring.

Refactoring s changing the implementation
without changing the behavior — we do not change
the contract whew refactoring

Fallacy

3: Customers write Acceptance Tests

This requires us to author a tool that supports Pata- We test the story wot a
Driven Tests Like Fit or PSL seripting like unit — but Lsn't that TBP?

Definition Cuonmber;

Originally called Functional Tests because each acceptance
test tries to test the functionalityef a user story.

Acceptance tests are different [is] modeled and possibly
even written by the customer. ...Hence the even-newer
name, Customer Test.

Own-site customer was an Lmportant XP concept — a
If the Customer defines the acceptance criteria, can domain expert the team could guestion, often
they write a test that expresses this? A seript that replaced with a Product Owner toda Y
exercises the software?
https://wiki.c2.com/?AcceptanceTest

Expe rirence Remember these are Customer Tests, that ts wh Y we
use FIT or Cucumber et al. to factlitate their
Lnteraction L.e. writing the tests.

These two problems--that customers don't participate, which
eliminates the purpose of acceptance testing, and that they
create a significant maintenance burden, means that acceptance

testing isn't worth the cost. | no longer use it or recommend it.
This is key: acceptance tests written using FIT or
Cucwmber are more expensive to write, because You need to
translate to inputs, and more expensive to own as they
expensive to change

James Shore, http://www.jamesshore.com/Blog/The-Problems-With-Acceptance-Testing.html

Helped write FIT. So he is not just a critic, he built the
tooling we are talking abouct.

Experience

ATDD only exitsts because we don't believe that TDD
does this.

ATDD is perilous because it implies that TDD does not deal with the
acceptance criteria for user stories

Remember we established earlier that TBD is driven
by acceptance criteria from a user story. So there is
wo difference in itntent.

Experience

Another aspect of ATDD is the length of the cycle between test and
feedback. If a customer wrote a test and ten days later it finally
worked, you would be staring at a red bar most of the time.

Kent Beck, TDD By Example

If the tests are nearly always red, developers don't rum the ATPD suite until
the end. And if they are integrating with others, they miss integration
Lssues and have to scramble to get the tests passing.

Principle

3: Customers specify Acceptance Criteria

Example-driven development is another name for this style — but its really
TPD done right. This produces the GWT we use for our test

Customers illustrate their descriptions with concrete
examples...programmers use these examples to guide their
work...Sometimes [programmers] use the examples directly in their
tests...More often...programmers use the examples as a guide,

writing a multitude of more focused, programmer-centric tests as
they use TDD

This also achieves self-documenting code

https://www.jamesshore.com/v2/blog/2010/alternatives-to-acceptance-testing

Fallacy

4: It doesn’t matter if you are test first or test last

Test Last does tests after software Ls written. It is
conventional unit, integration and acceptance

DEfl n lt 1oNn testing, but practicead b Yy developers with xtntt tools.

A development process that entails executing unit tests after
the development of the corresponding units is finished.

lmeplicitly modeling occurs before development. This
may be a lightweight process Like CRC cards, or
heavier exploration via UML

The feedback Loop is long. The desigwn takes to
Lmplement. n a RAD environment this may be a few
days, it might be following iteration though or
beyond.

How do we Rinow whewn we are Downe?

/

If you write code that is not needed by the given requirements
you are engaging in speculation. Most likely you will be wrong.
The code will not be needed or you will have to re-work that

Experience

code.
Whilst we may think it will be needed, often the Bven Uf we guess right, most Likely we have to re-
cost-value turns out to be poor and the customer work because the requirements are not nght. n
doesw't want it. But we already paid for it. the worse case we refuse to abawndown our

speculation and force it to work with hacks.

Principle

4: Only write production code in response to a test

Statement

If you don't have acceptance criteria or a clear
requirement, it’s a prompt for a conversation with the

We can't write speculative code here - only code that Customer - only build it once Done’ is defined.

has a requiremewt.

N

Only write production code in response to a test.
Only write a test in response to a requirement (user
story & acceptance criteria).

Don't forget, this tells us what the contract we are
defining should oo - its behavior.

Observation

Test First is design-by-contract. wWe are guided by
the behavior required of the system.

You need a way to think about design, you need a
method for scope control

/

If we test first we don't end wp with speculative code.
we know when we are done, and our code is a stmple

as Lt needs to be, but no simpLer.
Kent Beck, TDD By Example

5: You want 100% test coverage of your code

Definition
If we cannot write code without a test because of TDD,
thew all of our code MUST be covered by tests.

TDD followed religiously should result in 100 percent
statement coverage

wWe only get a discrepancy if:
(a) we have speculative code, not needed by a test
(b) we tntroduce an untested branch during

) Kent Beck, TDD By Example
refactoring

Experience

Although the team is practicing TPD, not all the code
may be exercised by TBB. That may lower owr
coverage.

Many test suites where development teams practice TDD
have less than 100% test code.

ls the amount of coverage tmportant when we
refactor, or Ls it a loweritng of test coverage that
matters?

Principle

5: Not all of code should be driven by TDD

Observation

Don't drive a spikae or other throwaway code. The sp&ke

.) is how Yyou get feedback.
Don't drive visual output. Fragile, Slow. Exploratory

Testing.

N

TDD is useful where it can provide fast binary
feedback. If it is not the fastest way to provide
feedback, use'something else.

O\

on’t drive =rd party code. Not yours. Test after.

Don't drive integration. Fragile, slow. 7est after.

(f wot all of your code Ls TDD, youw may not hit 100%
Focus on what ‘could’ break here.

Minutes

VAN

Seconds

Time to Feedback

The Testing Pyramid

Manual
Tests
Exploratory Testing

Monitoring and Alerting

Testing in Production

Automated Tests
/0 Test Automation

End-to-End Testing

Developer Tests
TDD of Use Cases

Effort and Fragility

Fallacies & Principles

1: Developers write Unit Tests

2: The trigger for a new test is a new function

3: Customers write Acceptance Tests

4: It doesn’t matter if you are test first or test last

5: You want 100% test coverage of your code

1: Developers write Developer Tests

3: The trigger for a new test is a new behavior

2: Customers write Acceptance Criteria

4: Only write production code in response to a test

5: Not all of code should be driven by TDD

Examples

def test_a_cell_with_two_or_three_neighbours_lives(fake_board):
board = fake_board[0]
cells = fake_board[1]
cells[0][1] k!
cells[1][0] = "x"
cells[1][1] tk
cells[1][2] k!
cells[2][1] = "x"

def get_neighbours(row, col):
"""This will get us the neighbour count for a cell
Assume that the board is 3 * 3 with a live cell at 1,1
It has no neigbours, and dies
if row ==
(SFNCOIN==
return 3
elif row ==
if col == 0 or col ==
return 3
else:
return 4
elif row ==
if col ==
return 3

return 0

board.get_live_neigbour_count = get_neighbours

new_board = tick(board)

assert str(new_board[0][1])
assert str(new_board[0][1])
assert str(new_board[1][1])
assert str(new_board[1][2])
assert str(new_board[2][1])

@pytest.fixture

def board():
board = Mock(Board)
board.generation = 0
board.rows = 3
board.cols = 3
return board

@pytest.fixture
def fake_board(board):
cells = []
for r in range(board.rows):
line = []
cells.append(line)
for ¢ in range(board.cols):
line.append(".")

def get_row(key):
return cells[key]

board.__getitem__ = Mock()
board.__getitem__.side_effect

board.__getitem__ = Mock()
board.__getitem__.side_effect

return board, cells

def test_three_live_neighbours_1live_four_live_neighbours_die():
""" Only cells with two or three live neighbours survive a generation"""

seed = Board(O, (3’ 3)’ [
.| |*|, |.|],
|*|, |*|],

*]

expected_generation_one = Board(1l, (3, 3), [
[|*|, I*I, |*|],
[|*|’ I.I, |*|],
[I*I’ I*I, |*|]

1)

generation_one = seed.tick()

assert generation_one == expected_generation_one

End

