
TDD Revisited
Where it all went wrong - guidance on what to do instead

Who are you?

• Software Developer for more than 20 years
• Worked mainly for ISVs

• Reuters, SunGard, Misys, Huddle
• Worked for a couple of MIS departments

• DTI, Beazley

• Microsoft MVP for C#
• Interested in architecture and design
• Interested in Agile methodologies and practices

• No smart guys
• Just the guys in this room

2

3

Agenda

• The Fallacies of TDD
• Clean Architecture
• Summary

4

The Fallacies of TDD

1: Developers write Unit Tests

Fallacy

To isolate issues that may arise, each test case should be
tested independently. Substitutes such as method stubs,
mock objects, fakes, and test harnesses can be used to

assist testing a module in isolation.

https://en.wikipedia.org/wiki/Unit_testing

Definition

In unit testing isolation becomes how
approach testing. We isolate one SUT
from another for defect localization.

Originates with modules being
separately tested.

To unit test requires test doubles, it’s
how you isolate. The SUT must be able
to replace any dependency with a test

double (a mock)

Need-driven Development [is a] variation on the test-driven
development process where code is written from the outside in

and all depended-on code is replaced by Mock Objects that verify
the expected indirect outputs of the code being written.

Meszaros, Gerard. xUnit Test Patterns

Belief To do this, we either have to design our
class hierarchy before writing a test,

and know we will mock a call…

… or we need to stop when we hit
something outside our single

responsibility when implementing and
replace it with a test double.

The consequence here is that we must
understand the details of the SUT not

just the contract… the details are
coupled to our test, we can’t change
them without changing our tests.

When I look around now, I see a lot of people using mocks to
replace all their dependencies. My concern is that they will

begin to hit the Fragile Test issues that mocks present. Gerard
Meszaros identifies the issues we hit as two specific smells:

Overspecified Software and Behavior Sensitivity.

http://codebetter.com/iancooper/2007/12/19/mocks-and-the-dangers-of-overspecified-software/

Experience In a strongly-typed language this
means an interface stands-in for the

actual dependency and must be injected
into our SUT.

The DI requirements here lead us
towards an IoC container over Poor

Man’s DI because we have a graph of
dependencies to realize at rnntime

If we change how our code works, a lot of
tests may break – we say that our tests
are sensitive to changes in the details.

Our tests should focus on the contract,
but here they focus on the

implementation, which makes them
hard to read as there is a lot of setup

code.

1: Developers write Developer Tests

Principle

I call them “unit tests,” but they don't
match the accepted definition of unit tests very well

Kent Beck, TDD By Example

Observation This is the only use of the phrase “unit
test” in the book, Kent is referring here

to his use of the term “unit test” in
casual conversation or by implication

from xUnit tools.

Tests as defined in this book don’t have
any of the characteristics of “unit tests”

as described in our earlier definition
around isolation.

Refactoring (noun): a change made to the internal structure
of software to make it easier to understand and cheaper to

modify without changing its observable behavior.

https://martinfowler.com/bliki/DefinitionOfRefactoring.html

Observation
Refactoring is one of the three steps in
TDD. If you don’t refactor much, it’s a

smell you are thinking too much
upfront.

By this we mean the contract that your
code exposes to other callers. Your test is

an expression of that observable
behavior.

TDD is contract-first.

The key idea here: you can change your
code’s details without changing the
tests. That is refactoring. It’s safe
because the behavior to preserve is

expressed by the test!

If the program’s behavior is stable from an observer’s
perspective, no tests should change.

https://medium.com/@kentbeck_7670/programmer-test-principles-d01c064d7934

Observation
In other words, when we change the

implementation without changing the
contract of what is under test, then the

tests don’t change.

TDD is a Contract-First approach to
testing. Behavior in this context means

that contract.

https://twitter.com/KentBeck/status/1182714083230904320

Our tests are coupled to the contract
expressed by the code

Our tests should not couple to the
implementation details i.e. via mocks

that check details.

Observation

My personal style is I just don’t go very far down the mock
path… your test is completely coupled to the

implementation not the interface… of course you can’t
change anything without breaking the tests

Kent Beck https://www.youtube.com/watch?v=z9quxZsLcfo

Tests should not use mocks to isolate the
SUT, so they are not unit tests!!!!

The consequence of using mocks to
observe the indirect outputs will be

coupling of tests to details…

Observation

https://www.youtube.com/watch?v=z9quxZsLcfo

Failure of a Unit Test shall implicate one and only one unit.
(A method, class, module, or package.)

https://wiki.c2.com/?ProgrammerTest

https://wiki.c2.com/?DeveloperTest

Definitions The fundamental principle of unit
testing.

The fundamental principle of TDD

Failure of a Programmer (or Developer) Test, under Test
Driven Development, implicates only the most recent

edit.

Test Driven Development produces Developer Tests. The
failure of a test case implicates only the developer's most

recent edit. This implies that developers don't need to use
Mock Objects to split all their code up into testable units.
And it implies a developer may always avoid debugging by

reverting that last edit.

https://wiki.c2.com/?UnitTest

Statement Use this name, or Programmer Tests, to
avoid confusion with unit testing

principles.Note that TDD is a process of discovery

Don’t use mocks to isolate the SUT
when doing Developer Tests. It is a

different practice. Know which practice
you are using and its trade-offs.

How should the running of tests affect one another? Not at all.

Kent Beck, TDD By Example

Tests are isolated from each other. So
that we can run them in parallel. This

keeps them fast.

The most common reason for interference is
shared state, called shared fixture and we mock
shared fixture to allow tests to work in parallel.

I/O is the most common shared fixture

We also tend to mock I/O for:
Speed – tests should be fast!

Fragility – it can make tests fail
unexpectedly

Observation

2: The trigger for a new test is a new function

Fallacy

Write a test that defines a function or improvements of a function

A function has pre-conditions and post-
conditions, a test simply asserts that

for a given set of pre-conditions, we get
the relevant post-conditions

https://en.wikipedia.org/wiki/Test-driven_development

Implementation is simply the algorithm
to turn the pre-conditions into the post-

conditions

Definition

The function is the System-Under-Test (SUT)

Testing is about confirming the
behavior of our functions. We may

want to use techniques like
parameterized testing to allow us to

easily vary input, test edge conditions
etc.

Belief

The desire to test methods on classes in languages
that provide access control leads to the question of

how to test private methods.

Test Coverage of 100% can be achieved if
we test every method, and all the possible

paths through that method.

Requires acceptance tests to confirm that these
functions whilst correct, produce behavior that is

correct overall.

When we return to our tests – it is often difficult to understand their
intent

If we returned because it has gone red –
it is breaking – why has is broken? Is it

because the acceptance criteria or our
implementation changed?

Experience

A promise of TDD was executable
specifications. We would not need

documentation, because our tests would
document how to use our code through
clear examples. Yet in many cases our

tests are just confusing.

2: The trigger for a new test is a new behavior

Principle

We need to be able to add amounts in
two different currencies and convert the

result given a set of exchange rates.

Kent Beck, TDD By Example

When we add amounts in two different
currencies

Given a set of exchange rates

Then we convert the result

Observation

Given a set of exchange rates,
When I add two amounts in different currencies together,

Then I get a result in the first currency.

Given the state of the world before the
test

Observation

GWT from BDD by Daniel Terhorst-North

When I exercise the behavior under test
Then we expect the following changes

When we structure our test we can
represent GWT as the Four-Fold Test

(Setup [Given], Exercise [When],
Verify[Then], Teardown - Meszaros

We can also use Act, Arrange, Assert –
Bill Wake

http://dannorth.net/about/

I found the shift from thinking in tests to thinking in
behaviour so profound that I started to refer to TDD as

BDD, or behaviour- driven development.

https://dannorth.net/introducing-bdd/

Observation This switch is really about moving away from
understanding TDD as a technique for testing, to a

contract first technique for exploring how an API
solves requirements

At first BDD is just a name for TDD that doesn’t
carry the confusion around testing.

Later BDD becomes a practice, with specification by
example tooling, lifecycle. This is not about that

BDD.

The next test you write in TDD is just the most
obvious step that you can make towards

implementing the requirement given by a use case
or user story.

Statement
This is: the question that answers everything: what

test do I write next?

What is the smallest change you could make to the
SUT that expresses a change to the acceptance criteria

for a behavior? Test that.

A use case or user story tells us what a customer
needs us to build – the behavior that the system

should exhibit. The acceptance criteria for that drive
our tests.

Wait, if TDD captures requirements, what are
Acceptance tests for? More on this later.

You do not write new tests if you introduce new
methods when refactoring to clean code.

Refactoring is changing the implementation
without changing the behavior – we do not change

the contract when refactoring

Observation
By implication this must not be exported – public –

but be hidden – private – as it can’t be part of the
contract. So it is already covered by the existing

tests.

This could be a new class too As long as it is a detail
of refactoring.

Remember that green phase is a transaction script –
discovering the algorithm – so we have poor structure,

that emerges in refactoring

3: Customers write Acceptance Tests

Fallacy

Originally called Functional Tests because each acceptance
test tries to test the functionality of a user story.

Acceptance tests are different [is] modeled and possibly
even written by the customer. ...Hence the even-newer

name, Customer Test.

https://wiki.c2.com/?AcceptanceTest

On-site customer was an important XP concept – a
domain expert the team could question, often

replaced with a Product Owner today
If the Customer defines the acceptance criteria, can
they write a test that expresses this? A script that

exercises the software?

This requires us to author a tool that supports Data-
Driven Tests like Fit or DSL scripting like

Cucumber;Definition
We test the story not a

unit – but isn’t that TDD?

These two problems--that customers don't participate, which
eliminates the purpose of acceptance testing, and that they

create a significant maintenance burden, means that acceptance
testing isn't worth the cost. I no longer use it or recommend it.

James Shore, http://www.jamesshore.com/Blog/The-Problems-With-Acceptance-Testing.html

Experience

Helped write FIT. So he is not just a critic, he built the
tooling we are talking about.

Remember these are Customer Tests, that is why we
use FIT or Cucumber et al. to facilitate their

interaction i.e. writing the tests.

This is key: acceptance tests written using FIT or
Cucumber are more expensive to write, because you need to

translate to inputs, and more expensive to own as they
expensive to change

ATDD is perilous because it implies that TDD does not deal with the
acceptance criteria for user stories

Experience

Remember we established earlier that TDD is driven
by acceptance criteria from a user story. So there is

no difference in intent.

ATDD only exists because we don’t believe that TDD
does this.

Another aspect of ATDD is the length of the cycle between test and
feedback. If a customer wrote a test and ten days later it finally

worked, you would be staring at a red bar most of the time.

Experience

If the tests are nearly always red, developers don’t run the ATDD suite until
the end. And if they are integrating with others, they miss integration

issues and have to scramble to get the tests passing.

Kent Beck, TDD By Example

3: Customers specify Acceptance Criteria

Principle

Customers illustrate their descriptions with concrete
examples…programmers use these examples to guide their

work…Sometimes [programmers] use the examples directly in their
tests…More often…programmers use the examples as a guide,

writing a multitude of more focused, programmer-centric tests as
they use TDD

https://www.jamesshore.com/v2/blog/2010/alternatives-to-acceptance-testing

Example-driven development is another name for this style – but its really
TDD done right. This produces the GWT we use for our test

Statement

This also achieves self-documenting code

4: It doesn’t matter if you are test first or test last

Fallacy

A development process that entails executing unit tests after
the development of the corresponding units is finished.

Test last does tests after software is written. It is
conventional unit, integration and acceptance

testing, but practiced by developers with xUnit tools.Definition

Implicitly modeling occurs before development. This
may be a lightweight process like CRC cards, or

heavier exploration via UML

The feedback loop is long. The design takes to
implement. In a RAD environment this may be a few

days, it might be following iteration though or
beyond.

If you write code that is not needed by the given requirements
you are engaging in speculation. Most likely you will be wrong.
The code will not be needed or you will have to re-work that

code.

Experience How do we know when we are Done?

Whilst we may think it will be needed, often the
cost-value turns out to be poor and the customer

doesn’t want it. But we already paid for it.

Even if we guess right, most likely we have to re-
work because the requirements are not right. In

the worse case we refuse to abandon our
speculation and force it to work with hacks.

4: Only write production code in response to a test

Principle

Only write production code in response to a test.
Only write a test in response to a requirement (user

story & acceptance criteria).

Statement
We can’t write speculative code here - only code that

has a requirement.

If you don’t have acceptance criteria or a clear
requirement, it’s a prompt for a conversation with the

Customer – only build it once ‘Done’ is defined.

Don’t forget, this tells us what the contract we are
defining should do – its behavior.

You need a way to think about design, you need a
method for scope control

Kent Beck, TDD By Example

Observation
Test First is design-by-contract. We are guided by

the behavior required of the system.

If we test first we don’t end up with speculative code.
We know when we are done, and our code is a simple

as it needs to be, but no simpler.

5: You want 100% test coverage of your code

TDD followed religiously should result in 100 percent
statement coverage

If we cannot write code without a test because of TDD,
then all of our code MUST be covered by tests.

Definition

Kent Beck, TDD By Example

We only get a discrepancy if:
(a) We have speculative code, not needed by a test

(b) We introduce an untested branch during
refactoring

Many test suites where development teams practice TDD
have less than 100% test code.

Although the team is practicing TDD, not all the code
may be exercised by TDD. That may lower our

coverage.

Experience

Is the amount of coverage important when we
refactor, or is it a lowering of test coverage that

matters?

5: Not all of code should be driven by TDD

Principle

TDD is useful where it can provide fast binary
feedback. If it is not the fastest way to provide

feedback, use something else.

Observation
Don’t drive visual output. Fragile, Slow. Exploratory

Testing.

Don’t drive a spike or other throwaway code. The spike
is how you get feedback.

Don’t drive integration. Fragile, slow. Test after.

Don’t drive 3rd party code. Not yours. Test after.

If not all of your code is TDD, you may not hit 100%
Focus on what ‘could’ break here.

Fallacies & Principles

1: Developers write Unit Tests

3: Customers write Acceptance Tests

2: The trigger for a new test is a new function

4: It doesn’t matter if you are test first or test last

5: You want 100% test coverage of your code

1: Developers write Developer Tests

2: Customers write Acceptance Criteria

3: The trigger for a new test is a new behavior

4: Only write production code in response to a test

5: Not all of code should be driven by TDD

Examples

End

