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Abstract

Traffic fatalities in the US have been rising among pedestrians even as they fall among
motorists. Contemporaneously, the US has undergone a significant shift in consumer
preferences for motor vehicles, with larger Sport Utility Vehicles comprising an in-
creased market share. Larger vehicles may pose a risk to pedestrians, increasing the
severity of collisions. I use data covering all fatal vehicle collisions in the US and exploit
heterogeneity in changing vehicle fleets across metros for identification. Between 2000
and 2019, I estimate that replacing the growth in Sport Utility Vehicles with cars would
have averted 1,100 pedestrian deaths. I find no evidence that the shift towards larger
vehicles improved aggregate motorist safety.
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1 Introduction

Between 2000 and 2019, motor vehicle crashes killed 741,000 people in the US

including 100,000 pedestrians.1 Figure 1 charts the trends in traffic fatalities for both

vehicle occupants and pedestrians over the 2000-2019 period. While deaths among

motorists have declined over this period, deaths among pedestrians have risen by 30%.

Over the same period the consumer market for private vehicles has shifted towards larger

vehicles and particularly towards Sport Utility Vehicles (SUVs). Larger vehicles may

impose a negative externality on pedestrians by making crashes involving pedestrians

more lethal. I estimate the effect of large vehicle uptake on the pedestrian fatality rate.

Figure 1: Trends in Traffic Fatalities

The number of fatalities among drivers and their passengers fell by 21% between 2000 and
2019. Over the same period the number of motor vehicle related fatalities among pedestrians
increased by 30%.

Vehicles on US roads became measurably larger between 2000 and 2019. Figure

2 plots changes in vehicle characteristics among all vehicles involved in a fatal crash

between 2000 and 2019. While in 2000, the typical vehicle weighed 1,745 kg, by 2019 the

average vehicle had increased in weight by 10.7% to 1,931 kg (Figure 2A). Additionally,

SUVs increased their prevalence from 13.5% of vehicles to 21.5% (Figure 2B). Over this

same period, a new class of very large vehicles began to enter the consumer market.

1National Highway Traffic Safety Administration, Fatality Analysis Reporting System.
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In 2000 only 2.6% of vehicles involved in fatal crashes weighed more than 2,500 kg, by

2019 the share had increased fivefold to 12.5% (Figure 2C).2 The increased prevalence

of these very large vehicles was mostly attributable to the popularity of a few large

SUVs, particularly the Ford Expedition and the Chevrolet Suburban and Tahoe.

Figure 2: Changes in Vehicle Size Among Vehicles Involved in a Fatal Crash

A. Average Weight

B. Sport Utility Vehicles as a Share of all Vehicles

C. Share of Vehicles Over 2,500 kg

Between 2000 and 2019 the average weight of consumer vehicles involved in a fatal crash
increased by 11%, the prevalence of SUVs increased by 59% and the share of vehicles that are
more than 2,500 kg increased by 374%.

Data for vehicles involved in fatal incidents are more consistently collected in the

2Data comes from the national Fatality Analysis Reporting System and the Environmental Protec-
tion Agency’s Fuel Economy Test Car List Database. Data details are included in Section 2.
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US compared to vehicle registration data, as will be discussed in Section 2. However,

vehicles involved in fatal crashes may not be representative of the overall vehicle fleet.

Figure 3 uses data reported on registered vehicles by the Federal Highway Administra-

tion (FHWA). This source suggests an even more rapid shift towards SUVs and away

from cars than is observed in crash data. The share of registered vehicles that are SUVs

roughly tripled over this period, while the share of vehicles classified as cars fell by a

third.

Figure 3: Registered Cars and SUVs as Share of National Vehicle Fleet

Data is reported by each state and tabulated by the Federal Highway Administration. 2011
data was not recorded consistently across states and is therefore omitted.

While larger vehicles are designed to protect their drivers and passengers in the

event of a crash, less concern is given to the effect on pedestrians. Past research in the

safety literature has considered the mechanisms that relate vehicle size to motorist and

pedestrian safety. There are two primary mechanisms that could lead large vehicles

to generate additional harm when hitting a pedestrian. First, the additional weight

means the vehicle will take longer to come to a stop and will strike with more force as

compared to a lighter vehicle. Second, large vehicles have higher front ends, affecting

the point of impact on a pedestrian. A conventional car is likely to strike a pedestrian

in the legs, propelling them over the hood of the vehicle. A vehicle with a higher front

end is likely to make first contact with the pedestrian’s torso or head, harming vital

organs and deflecting their body under the vehicle. In transportation safety literature,

pedestrians hit by light trucks (a category including SUVs, pickups and minivans) have

been found to suffer greater rates of mortality (Simms and Wood, 2006; Tamura et al.,

2008) and higher rates of brain injury (Roudsari et al., 2004) than those hit by cars.
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Lefler and Gabler (2004) used US data from the 1990s to estimate that a pedestrian

struck by a light truck is two to three times more likely to die than a pedestrian struck

by a car. In a meta-analysis of papers concerned with pedestrian fatalities, Desapriya

et al. (2010) found that the chance of fatal injury among pedestrians was 50% higher

when struck by a light truck compared to a car. I will test for the effect of both vehicle

weight and body type on pedestrian fatalities.

Significant past research has examined the effect of vehicle size on road safety. The

adoption of the Corporate Average Fuel Economy (CAFE) vehicle emission standards

in the US encouraged consumers to purchase lower emission vehicles, which were likely

to be smaller. Crandall and Graham (1989) argued that this incentive resulted in higher

rates of motorist fatalities due to smaller vehicles providing more limited protection to

drivers. The authors pointed out that drivers of smaller vehicles are more vulnerable

in crashes than they would be in a larger vehicle and extrapolate this effect across

the market. However, this method ignores external safety risks that larger vehicles

may impart by increasing the severity of injury to other motorists and to pedestrians.

Focusing on a subset of crashes from the 1990s, Toy and Hammitt (2003) estimated the

effect of vehicle types on injury severity in the US. Results indicated that SUVs fared

better in protecting their driver in the event of a crash, but also inflicted more damage

onto the drivers of other vehicles compared to cars. Further analysis of the interaction

between light trucks in cars is provided in Gayer (2004), who similarly argued that

the driver safety improvements provided by large vehicles may come at the expense of

externally imposed risks. Estimates suggested that an increase in light trucks would

increase overall traffic fatalities. Van Ommeren et al. (2013) focused on the relative

weights of opposing vehicles involved in collisions in the Netherlands, estimating that

a 500 kg increase in one car’s weight increased the risk of a fatality by 70%. Ahmad

and Greene (2005) revisited the analysis of Crandall and Graham (1989) specifically,

finding little evidence that CAFE led to higher road fatalities in aggregate.

White (2004) attempts to directly estimate the marginal effect of drivers switching

from smaller to larger vehicles in the US during 1995-2001. The assessment showed that

for every driver whose life was saved on account of being in a larger vehicle, 4.3 fatalities

were created among other road users, including motorists, cyclists and pedestrians. The

paper also points out the inability of the legal system to provide incentives for drivers

to internalize external safety risks, as drivers are typically only held responsible in cases

of driver negligence rather than being held responsible for total damages inflicted.

Anderson (2008) examined cross state variation in light truck prevalence and traffic
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fatalities spanning the 1981-2004 period in the US. The author found that states with

higher rates of light truck use had higher rates of traffic fatalities and that the increase in

fatalities was primarily due to an increase in deaths among drivers and pedestrians who

were struck by a light truck rather than a smaller vehicle. Anderson and Auffhammer

(2014) quantified the safety externality of large vehicles, arguing the US vehicle fleet

is inefficiently large and the externality could be corrected through gasoline taxes. Li

(2012) also attempted to quantify the externality of light trucks, estimating the implied

road safety externality of a light truck over its lifetime to be $2,400.

While there are several past studies linking vehicle size and safety, the current

study is unique in a number of respects. First, I contribute an analysis covering a much

more recent period in the US. The characteristics of the vehicle fleet have changed

substantially during the 2010s. Second, I focus on the effect of vehicle size on pedestrian

fatalities in particular. The sharp increase in pedestrian fatalities in the US is a recent

phenomenon that has not been noted or studied in the economics literature. Third,

I provide a new and novel data source by combining vehicle weight data from the

Environmental Protection Agency (EPA) with crash level data and vehicle registration

data that allows for analysis at the metropolitan level. Fourth, while prior studies

have focused on vehicle weight, I focus on differences in vehicle body types, estimating

unique effects for different varieties of light trucks.

The relationship between vehicle characteristics and pedestrian fatalities is one

element of overall road safety. Significant economic research has been undertaken to

investigate other causes of traffic fatalities such as vehicle speed (Ang et al., 2020;

Van Benthem, 2015), road congestion (Green et al., 2016) alcohol consumption (Baugh-

man et al., 2001; Green et al., 2014; Hansen, 2015; Jackson and Owens, 2011; Levitt

and Porter, 2001; Ruhm, 1996), public policy and regulation (Basili and Belloc, 2020;

Borsati et al., 2019; Bourgeon and Picard, 2007; Carpenter and Stehr, 2008; Karaca-

Mandic and Ridgeway, 2010; Peltzman, 1975), electronic distractions (Blattenberger

et al., 2013; Oviedo-Trespalacios, 2018) and the driver’s state of mind (Giulietti et al.,

2020). The current study is focused specifically on the effect of vehicle characteristics

on road fatalities, with a particular focus on pedestrian effects.

The paper will proceed as follows. Section 2 provides information on data sources.

Section 3 discusses the regression methodology. Section 4 provides results and Section

5 will conclude.
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2 Data

I combine data from a number of public sources. Traffic fatality data is taken

from the National Highway Traffic Safety Administration (NHTSA), Fatality Analysis

Reporting System (FARS).3 The data set is a complete record of all fatal traffic collisions

in the US. To be included in the data the collision must have been on a public road,

involved any type of motor vehicle and caused the death of one or more individuals.4

The database contains a large number of variables characterizing the collision, including

information on all vehicles and persons that were involved in the incident. The study

period will cover 2000 to 2019. During this period FARS recorded 691,000 crashes that

resulted in at least one fatality. These crashes included 1,045,000 vehicles and 1,754,000

individuals. 108,000 of the individuals were pedestrians. 760,000 individuals, including

100,000 pedestrians, died due to a crash. The enormous number of fatalities underlines

the scope of the public health issue. The national distribution of crashes causing a

pedestrian fatality are shown in Figure 4. Incidents cover all populated areas of the US,

and are concentrated in city centers as well as extending along the interstate highway

system. In the main analysis I analyze only crashes occurring within metropolitan

areas, defined according to Core Based Statistical Area (CBSA) boundaries.

The empirical analysis will base estimates on the rate of deaths per 100,000 res-

idents across metropolitan areas. The sample contains all metropolitan areas in the

US for which data is available.5 The final data set is a balanced panel containing 358

US metropolitan areas with annual observations spanning 2000-2019. Every incident

recorded in the FARS data is accompanied by precise location information. I use the

recorded county of the crash to assign each observation to a metropolitan area. Across

all years and metros, the average rate of traffic fatalities was 13.3 deaths per 100,000 res-

idents. The death rate among vehicle drivers and passengers was 11.7 per 100,000 while

the rate of pedestrian deaths was 1.5 per 100,000. Summary statistics are provided in

Table 1.

For each metropolitan area in the US I construct annual estimates of vehicle fleets

3The FARS data is publicly available at www.nhtsa.gov/research-data/fatality-analysis-reporting-
system-fars.

4To be considered as caused by the vehicle crash, the death must occur within 30 days of the
collision.

5Four metros were dropped because they had no fatal crashes that could be merged to EPA vehicle
weight data in at least one year of analysis (Aimes, Iowa; Carson City, Nevada; Fairbanks, Alaska;
and Sandusky, Ohio). Four metros were dropped because they lacked complete demographic data
(Crestview, Fl; Lewiston, ID; Nort Port, Fl; Steubenville OH).
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Figure 4: All US Pedestrian Fatalities 2001-2019

HI AK

Each dot corresponds to a vehicle crash that resulted in at least one pedestrian fatality. The
year 2000 is included in analysis but not in this figure as observations from 2000 lack latitude
and longitude information.

by vehicle body type, relying on both FARS data and vehicle registration data. FARS

includes variables on vehicle body type. In the average metro, 46.2% of consumer

vehicles involved in a fatal crash were cars while 42.6% were light trucks and 11.2%

were motorcycles. I examine the subgroups within the light truck category, including

SUVs (16.3% of vehicles), pickup trucks (20.1%) and minivans (6.0%). I further brake

down the SUV category into Small SUVs (12.3%) and Large SUVs (4.0%). Large SUVs

are defined by FARS to be “full-size multi-purpose vehicles primarily designed around

a shortened pickup truck chassis.” I also include the FARS category of “Utility Station

Wagon” in my definition of Large SUVs.6 Utility Station Wagons have a similar body

6The Large SUV and Utility Station Wagon categories in FARS data includes the following vehicle
models: Acura MDX; AMC Hummer; Avanti Studebaker XUV; Buick Enclave (2013 on); Cadil-
lac Escalade/Escalade ESV; Chevrolet Full-size Blazer/Suburban/Tahoe/Travellall/Traverse (2013
on)/Yukon XL (2000 on); Chrysler Aspen; Dodge Durango (2004 on); Ford Full-size Bronco (1978
on)/Expedition/Excursion; GMC Acadia (2013 on)/Jimmy (1991-1994)/Yukon (Denali/XL); Honda
Pilot; Hyundai Veracruz (2008 on); Infiniti QX56/QX80; Isuzu Ascender; Jeep Grand Cherokee/Grand
Wagoneer; Kia Mesa/Borrego; Land Rover LR2/LR3/Freelander (2004 on)/Range Rover; Lexus
LX450/470; Lincoln Navigator; Mazda CX-9; Mercedes Benz GL; Nissan Armada; Porsche Cayenne;
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type to Large SUVs but are typically even larger, including an extended passenger

area. Identifying Large SUVs will be important as these vehicles are likely to have

body designs that include very high front ends, which safety tests have suggested could

lead to increased pedestrian mortality. The most common Large SUVs in the data are

the Chevrolet Tahoe, Ford Expedition and Chevrolet Suburban, which make up 24%,

15% and 14% of Large SUVs respectively.

When computing metropolitan vehicle fleet shares I focus on consumer vehicle

shares, omitting the FARS vehicle categories for commercial buses and heavy trucks.

Heavy trucks are classified as those exceeding 4,536 kg (10,000 pounds) and account

for 9.2% of vehicles involved in fatal crashes over the study period. I also omit crashes

involving vehicles that fall outside of the typical categories, including construction and

farm equipment, golf carts, and snowmobiles. These unclassified vehicles comprised

1.7% of all vehicle observations.

To construct vehicle fleet shares at the metropolitan level, I augment FARS data

with data on all vehicles registered in the US from the FHWA Highway Statistics data

set.7 The data contains the number of vehicles registered in each state, broken out by

vehicle type. The FHWA state registration data includes categories for light trucks,

SUVs, pickup trucks, minivans and motorcycles which correspond to FARS categories.

The distinction between “Small” and “Large” SUVs that is made in the FARS data is

not available in the FHWA data. Annual reports from FHWA cover all years of analysis.

However, because vehicle registration data is reported to FHWA by individual states,

the categorization of specific vehicles into categories is somewhat variable across states

and across time. The registration data reported in 2011 uses a different methodology

and will not be used. There are also instances where individual states introduce revised

vehicle classification systems across the study period. The variability in reporting

practices in the FHWA data limit the ability to make use of panel variation in the

FHWA registration data. I therefore pool FHFA data cross all years to avoid relying

on spurious time-series variation.

While prior studies have focused on state level variation, I choose to focus on

the metropolitan area as the unit of analysis. The use of a smaller unit of geography

allows estimates to be based on a larger set of observations that preserves more spatial

variation in the data. There is significant heterogeneity in variables across metros within

Toyota Land Cruiser/Sequoia; and Volkswagen Touareg.
7The FHWA Highway Statistics data is publicly available at

www.fhwa.dot.gov/policyinformation/statistics.cfm.
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Table 1: Metropolitan Summary Statistics

Variable Mean Standard Min Max
Deviation

Pedestrian deaths per 100,000 1.527 1.122 0.000 10.949
Motorist deaths per 100,000 11.727 5.801 0.616 60.023
Car share 0.462 0.106 0.000 1.000
Light truck share 0.426 0.101 0.000 1.000

SUV share 0.163 0.070 0.000 0.667
Small SUV share 0.123 0.062 0.000 0.600
Large SUV share 0.040 0.037 0.000 0.333

Pickup share 0.201 0.090 0.000 0.800
Minivan share 0.060 0.045 0.000 0.400

Motorcycle share 0.112 0.069 0.000 0.714
Average vehicle weight (kg) 1,855 113 1,304 2,517
Average model year 2000.1 4.8 1985.8 2014.0
Drunk driver related share 0.287 0.122 0.000 1.000
Average driver age 41.4 4.1 23.5 70.0
Population 718,334 1,614,325 49,832 20,320,876
College education share 0.245 0.090 0.061 0.805
High School education share 0.811 0.140 0.270 1.818
Median household income 48,428 10,579 24,863 130,865
Male share 0.492 0.011 0.456 0.583
GDP (millions $) 36,878,702 102,733,220 219,082 1,861,147,412
Health care quality score† -0.024 0.479 -1.222 1.227

N = 7,160. Data is at the CBSA-year level. Each of the 358 CBSAs in the data set have
20 observations, one for each year in 2000-2019. Vehicle shares are derived from unadjusted
FARS data. † Health care quality score is a measure of local health care quality given by the
United Health Foundation America’s Health Rankings system.

the same state, suggesting state level analysis may be masking important variation.

Relevant transportation system differences are more likely to be homogenous within

metros than states as metro residents share the same transportation infrastructure for

commuting and daily travel.

FARS data includes the make, model and model-year of every vehicle involved

in an incident. Using this information I merge on vehicle weight data from the EPA

fuel economy testing data.8 I am able to match EPA vehicle weights to 67.1% of

FARS vehicle observations. The EPA data includes information for every vehicle that

8The EPA testing data is publicly available at www.epa.gov/compliance-and-fuel-economy-
data/data-cars-used-testing-fuel-economy.
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underwent EPA testing across model years. Data is available from 1984 to present. The

FARS observations that cannot be matched to EPA data include vehicles manufactured

prior to 1984 (2.3% of FARS observations) as well as cases where the vehicle make and

model have no corresponding entry in the EPA data set (32.2% of FARS observations).

The latter case is due to the inconsistent classifications of vehicles between the NHTSA

and the EPA. For example, different assumptions are made regarding when two slightly

different versions of a vehicle should be considered as different models. There are some

cases were the EPA data has information on a particular make and model but not for

all years. In such cases I assume the vehicle weight is the same as the most recent model

year for which data is available. A significant amount of manual coding was required

so that these data sets could be merged reliably.

I use demographic variables from the US Census (2000) and from the American

Community Survey (2006-2019 1-year estimates). The data is available at the county

level which I collapse to the CBSA level. I linearly interpolate the data to impute

missing observations from 2001-2005. I also use the Bureau of Economic Analysis (BEA)

county level GDP data. The data set includes GDP estimates for the US between 2002

and 2019. I linearly extrapolate the GDP estimates to impute values for 2000 and 2001.

Finally, I use the America’s Health Rankings data set from the United Health

Foundation. The data provides annual measures of overall health care quality at the

state level. The metrics are constructed from measures of different components of health

care quality to construct a state level score. I assign each metro an annual health care

quality score for the state in which it is located. For metros that span multiple states,

I use a population weighted average of the health care scores of the states containing

the metro.

3 Methodology

US metros differ in the average characteristics of their vehicle fleets and have expe-

rienced heterogeneous adoption of light trucks and large vehicles over the study period.

I estimate the impact of vehicle fleet characteristics on road deaths by regressing the

metropolitan pedestrian fatality rate against several measures of vehicle fleet charac-

teristics.

Equation 1 captures the regression equation for estimating the effect of average

vehicle weight. Dmt is the number of deaths per hundred thousand people, where m

indexes a particular metro and t indexes a particular year. Wmt is the average weight of
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a vehicle for a particular metro-year observation. Ψmt is a vector of metro-year control

variables. Φm is a vector of metro fixed effects and Λt is a vector of year fixed effects.

I cluster errors at the metro level in all specifications.

Dmt = β0 + β1Wmt + Ψmt + Φm + Λt + εmt (1)

Time-invariant differences across metros that may affect fatalities are fully con-

trolled for by metro fixed effects. National trends across the study period are fully

controlled by time fixed effects. The source of any omitted variable bias must therefore

arise from changes in metro characteristics that are occurring differentially across met-

ros and across time. I include an array of control variables in Ψmt to control for this

potential omitted variable bias. I include the average model year of the vehicle fleet

to provide a proxy for omitted vehicle characteristics and safety features that change

through time. I control for the share of crashes where alcohol was a factor to remove

the effect of potentially changing rates of drunk driving across metros. I control for

overall population to absorb differential population growth which may affect congestion

and also proxy for urban growth. I control for educational attainment using shares of

the adult population with high school diplomas and college degrees. I also control for

the changing share of the population who are male. Education level and gender have

been considered as potentially correlated with driving safety, though empirical evidence

of this relationship is sparse (Lourens et al., 1999). I control for median household in-

come and overall GDP of the metro. Controlling for GDP, and income, is potentially

important to capture the changing purchasing power of local residents. If residents are

becoming richer they will be more likely to purchase a new vehicle, which is likely to be

larger. Finally, Ψmt includes a measure of health care quality for each metro’s state, as

described in Section 2. The likelihood that a crash involves a fatality is endogenous to

the quality of medical care provided to crash victims. The control variable is meant to

capture any changes in health care quality that may be occurring differentially across

metros during the study period. Transportation policy and infrastructure changes that

are made by individual metros during the study period are not easily available in data

and are therefore not controlled for. I assume such changes are negligible in terms

of their ability to jointly affect vehicle fleets and road safety. Average values for all

regression control variables are shown in Table 1.

In addition to testing for the effect of average vehicle weight I test for the effect of

changing shares of different vehicle body types. One limitation of conducting analysis
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at the metro level is that vehicle registration data is not available at levels below the

state. If estimates of metro vehicle fleets are derived from crash data, the estimated

fleet shares may be biased if particular vehicle types are more likely to be involved in

fatal vehicle crashes. I summarize the chain of causation in Figure 5, using the light

truck category as an example. I have precise information on the share of light trucks

that are involved in fatal crashes, and can therefore precisely estimate the impact of

this share on the rate of pedestrian deaths. This coresponds to the effect of node B

on node C in Figure 5. If light trucks are no more or less likely to be involved in fatal

crashes than other vehicle types, their prevalence in crash data should be equal to their

actual share of the vehicle fleet. In terms of Figure 5, if edge 2 is assumed to be null,

the effect of node A on node C is identical to the effect of node B on node C. If this

assumption holds then the estimated causal effect of vehicle shares derived from crash

data will be equal to that derived from registered fleet data. However, if light trucks are

more or less likely to be involved in a fatal crash, the estimates would differ. I consider

this potential bias in a number of ways, which I describe below.

Edges 3 and 4 in Figure 5 represent the mechanisms that link more light trucks

being involved in crashes with the potential for more pedestrian deaths. These in-

clude more frequent collisions with pedestrians, conditional on overall crash likelihood

(edge 3). For example, light trucks may provide worse visibility to the driver, reducing

their ability to notice pedestrians. The second mechanism is, conditional on striking

a pedestrian, a light truck may cause more harm due to the dimensions of its body

type (edge 4). My main specification will capture the combined effect of these two

mechanisms (edges 3 and 4), providing the partial effect of higher light truck shares on

the pedestrian death rate.

Table 2 compares the vehicle shares from the FARS crash data, with the national

FHWA vehicle registration data. The largest discrepancy is the stark overrepresentation

of motorcycles in fatal crashes. While only 3.0% of vehicles registered nationally are

motorcycles, 10.7% of vehicles involved in fatal crashes are motorcycles. For light

trucks, I find that 45% of vehicles registered nationally are light trucks, while 43% of

vehicles involved in fatal crashes are light trucks. Table 2 suggests that vehicle shares

derived from crash data are relatively representative of the vehicle fleet at the national

level.

To correct metro vehicle share estimates I calculate the over and under representa-

tion of vehicle shares in crash data relative to registration data. National data suggests

that cars are underrepresented in fatal crash data by 10.3%, SUVs are underrepresented

12



Figure 5: Causal Effect Diagram

A. Light truck
fleet share

B. Light truck share of
vehicles in fatal crashes

C. Pedestrian
death rate

1. Mechanical
relationship

2. Light trucks over/under
represented in fatal crashes

3. More/less likely to involve
a pedestrian in crash

4. More/less severe
pedestrian crash impact

The figure diagrams the causal paths linking a metropolitan area’s overall light truck fleet
share, to light trucks appearing in fatal crash data, to the effect on pedestrian deaths. Given
data constraints, I am able to precisely estimate the effect of B on C, but impose additional
assumptions in order to estimate the effect of A on C.

Table 2: Vehicle Shares by Data Source

FARS FARS FHWA Registrations
Metros Only National National

Car share 0.478 0.468 0.522
Light truck share 0.413 0.425 0.448

SUV share 0.162 0.161 0.197
Pickup share 0.189 0.201 0.177
Minivan share 0.061 0.061 0.074

Motorcycle share 0.109 0.107 0.030

FARs data is a selective sample of vehicles that have been involved in a crash that resulted in
a fatality. FHWA data covers all registered vehicles nationally. The data from both sources
span 2000-2019, with 2011 data omitted for FHWA data. Fleet share estimates from the two
sources are relatively consistent, with the exception of motorcycles.

in crash data by 18.3%, pickups are overrepresented by 13.6%, minivans are underrep-

resented by 17.6% and motorcycles are overrepreseted by 256.7%. These gaps could be

the result of particular vehicle types being intrinsically less safe, or the gaps could be

due to the characteristics of the drivers who choose particular vehicle types.

I propose a correction method to adjust fleet estimates derived from crash data
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so they more closely reflect overall fleet shares. I derive adjusted estimates of metro

vehicle fleets by assuming that the different propensity to be involved in a fatal crash

across vehicle types is uniform within a metro’s home state.

The adjustment for light truck share is described by equation 2. Lunadjusted
mt is light

truck share in metro m during year t derived from crash data. Ls(m) is the share of

registered vehicles in the metro’s home state that are light trucks, pooled across all

years of data. Ls(m) is the share of vehicles involved in a fatal crash that are light

trucks in the metro’s home state, pooled across all years in the data. Adjusted shares

for the other vehicle types are calculated analogously.

Ladjusted
mt = Lunadjusted

mt × (Ls(m)/Ls(m)) (2)

For example, if a metropolitan area reported that 20.0% of vehicles involved in fatal

crashes for a particular year were SUVs, and SUVs were found to be underrepresented

in crash data by 10% in that state, I assume 22% of the vehicle fleet were SUVs in

that year. The methodology allows me to generate metro level vehicle fleet estimates

that account for the differing crash propensity across vehicle types. The necessary

assumption is that differences in fatal crash likelihood across vehicle types are identical

across metros in the same state. For metros that span multiple states I use population

weighted data from the relevant states to estimate vehicle registration shares. Because

FHWA does not distinguish between Large and Small SUVs I assume that, within the

SUV category, Large and Small SUV shares in crash data are representative of fleet

shares.

Equation 3 is used to estimate the impact of vehicle fleet shares on the pedestrian

fatality rate. When constructing vehicle fleet shares, all vehicles fall into categories

of either cars, light trucks or motorcycles. Within the light truck category there are

SUVs, pickups and minivans. Within the SUV category I further distinguish between

Large and Small SUVs. Equation 3 is composed similarly to Equation 1 but rather

than using vehicle weight I use the share of a metro’s vehicle fleet in each category for

a particular year. In the basic form, I include variables for light truck share (Lmt) and

motorcycle share (Cmt). The omitted category is cars. This model setup allows β1 to

be interpreted as the effect of converting a share of cars to light trucks on pedestrian

fatalities. For example 0.1× β1 is the effect of converting 10% of the local vehicle fleet

from cars to light trucks on the pedestrian fatality rate. I also perform regressions that

are analogous to Equation 3 but where I break out the light truck category into the
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more disaggregated categories.

Dmt = β0 + β1Lmt + β2Cmt + Ψmt + Φm + Λt + εmt (3)

A central concern with arriving at causal estimates will be the possible presence

of omitted variable bias. There may exist unobserved metropolitan characteristics that

are correlated with both road fatalities and vehicle ownership choices. For example,

metros that are constructing more highways or wider roads may provide an incentive

for owning a larger vehicle, but this type of road infrastructure may directly contribute

to road deaths by accommodating higher vehicle speeds (Lewis-Evans and Charlton,

2006; Manuel et al., 2014). Supportive of the identification strategy is the fact that,

while metropolitan characteristics such as urban form and road characteristics evolve

slowly, the shift towards larger vehicles has happened relatively quickly over the study

period. If vehicle fleet characteristics contribute to pedestrian fatalities I expect to

find that metros that had different shifts in vehicle fleets experienced different shifts in

pedestrian fatalities.

An additional barrier to identification is the possibility of reverse causation. While

larger vehicles may contribute to pedestrian fatalities for the reasons given above, rising

traffic fatalities may cause local residents to look for ways to improve their road safety,

potentially influencing their vehicle purchase decisions. This concern is less relevant

to the study of pedestrian fatalities than it is for motorist fatalities. Motorists have

a clear incentive to purchase a larger vehicle when confronted with deteriorating road

safety among motorists. A changing pedestrian fatality rate is not likely to directly

influence the decision of drivers regarding what vehicle to purchase, as the driver does

not bear the risks imposed on pedestrians. However, pedestrian fatalities and motorist

fatalities may be correlated. In a robustness check I will estimate Equations 1 and 3

while directly controlling for the rate of motorist fatalities, which can proxy for road

safety.

4 Results

4.1 Main Results

In this section I provide results from the pedestrian fatality panel regression models

as well as results from robustness checks, and alternative specifications. I also provide

estimates of the effect of vehicle characteristics on motorist safety. Overall, I find strong
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evidence of larger vehicles causing a deterioration of pedestrian safety but no evidence

of improved motorist safety in aggregate.

Table 3, Columns 1-5 show estimates of the effects of average vehicle weight and

vehicle fleet shares on the annual number of pedestrian deaths per 100,000 population.

In addition to metro and year fixed effects, regressions include the array of control vari-

ables listed in the previous section. I supply coefficient estimates for control variables

in Appendix A. I adjust estimates of vehicle fleets using state level registration data,

according to the method described in Section 3. Overall, I find that larger vehicle fleets

are related to more pedestrian fatalities.

Column 1 regresses the pedestrian fatality rate against the average weight of ve-

hicles involved in fatal crashes, following Equation 1. Every 100 kg increase in average

vehicle weight is associated with an additional .03 fatalities per 100,000 residents. The

median observation has an annual pedestrian fatality rate of 1.34 fatalities per 100,000

residents, meaning that a 100 kg increase in average vehicle weight is related to a 2.4%

increase in pedestrian fatalities for a metro with the median fatality rate.

Table 3, Column 2 estimates the effect of light trucks. In columns 2-5 the omitted

category is cars, so that the partial effects on vehicle types can be interpenetrated as

the effect of substituting cars with the various vehicle categories. Converting 10% of

vehicles from cars to light trucks is associated with an increase in the pedestrian fatality

rate of .05, or a 3.6% increase for the median metro. Column 3 breaks out light trucks

into the constituent categories. I find pickup trucks, minivans and SUVs all significantly

increase pedestrian fatalities relative to cars. Converting 10% of the vehicle fleet from

cars to pickups is estimated to increase the pedestrian fatality rate by .04 deaths per

100,000 residents (3.4% in the median metro). I find that converting 10% of cars to

minivans would increase pedestrain deaths by .05 deaths per 100,000 residents (3.9% in

the median metro). Converting 10% of cars to SUVs would increase pedestrian deaths

by .03 deaths per 100,000, or 2.6% in the median metro. In column 4 I further break

out SUVs into Large and Small SUVs. I am unable to recover statistically significant

effects for SUVs at this level of disaggregation.

Across specifications I find that the share of motorcycles has a highly signifi-

cant, negative effect on pedestrian deaths. Motorcycles are commonly involved in fatal

crashes, but in most cases the fatality is only the driver of the motorcycle and pedes-

trians are rarely victims of fatal crashes involving motorcycles.

Column 5, includes the four light truck categories and average vehicle weight in

a single regression. The multicollinearity between weight and body types cause the
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Table 3: Effect of Vehicle Characteristics on Pedestrian Fatality Rate

(1) (2) (3) (4) (5)

Vehicle weight (100 kg) 0.032* 0.002
(0.015) (0.020)

Light truck share 0.477**
(0.127)

SUV share 0.342*
(0.151)

Small SUV share 0.288 0.283
(0.176) (0.175)

Large SUV share 0.521 0.504
(0.271) (0.290)

Pickup share 0.448* 0.447* 0.431
(0.176) (0.176) (0.222)

Minivan share 0.521* 0.524* 0.514
(0.238) (0.239) (0.261)

Motorcycle share -2.327** -2.423** -2.417** -2.434**
(0.578) (0.582) (0.581) (0.608)

CBSA fixed effects? Y Y Y Y Y
Year fixed effects? Y Y Y Y Y
Control variables? Y Y Y Y Y

R2 0.043 0.050 0.049 0.050 0.050
N 7160 7160 7160 7160 7160

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and are
clustered at the CBSA level. The dependent variable is the number of pedestrian fatalities
per 100,000 population. Control variables include: population, share of population with a
high school diploma, share of population with a college degree, median household income,
share of population who are male, CBSA GDP, average model year of vehicles involved in
fatal crashes, share of fatal crashes that involved alcohol, average age of drivers involved in
fatal crashes, and a measure of state health care quality.

resulting estimates to be statistically insignificant.

As discussed in Section 3, metropolitan fleet shares derived from crash data will

not accurately reflect the effect of changing overall fleet share if particular vehicle types

are involved in fatal crashes at different rates. Table 4 tests the sensitivity of results to

alternative vehicle share corrections. In columns 1-3 I estimate the effect of substituting

cars for light trucks, repeating the Equation 2 specification. In column 1 I use unad-

justed metro vehicle shares taken directly from FARS crash data. In column 2 I adjust

vehicle shares according to their relative likelihood of being involved in a fatal crash by
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using a uniform adjustment based on the difference between national FARS statistics

and national FHWA vehicle registration data. In column 3 I use adjustments based on

state level differences in vehicle prevalence between the two data sources, matching the

main specification. In columns 4-6 I estimate the effect of substituting cars for different

light truck types, testing the sensitivity of results to the different vehicle fleet adjust-

ments. I find that the estimates of vehicle shares on pedestrian fatalities are robust to

differing approaches to correcting the bias associated with a vehicle type’s propensity

to be involved in a fatal crash. I do find that the adjustment has a significant effect

on my estimate of motorcycles’ effect of pedestrian fatalities, consistent with the large

overrepresentation of motorcycles in crash data.

The need to adjust vehicle shares with registration data could be avoided if the

analysis were conducted at the state level where registration data is available. Due to

inconsistency in the collection of registration data across states, the state level analysis

may give unreliable results. However, I provide full state level results in Appendix B.

State level analysis returns statistically insignificant results for all light truck categories

and the measure of vehicle weight.

A concern with identification may be that if there existed time varying omitted

variables that affected both road safety and vehicle choice this could lead to biased

estimates. Also, issues with reverse causality could arise if drivers choose to purchase

larger vehicles at times when road safety is deteriorating. Controlling for the motorist

fatality rate should eliminate much of this bias by introducing a strong proxy for road

safety conditions. On the other hand, motorist fatalities may be an inappropriate

control variable because it is not exogenous to pedestrian fatalities. Table 5 compares

regression results to an alternative specification where I add a control for the rate of

motorist fatalities. Columns 1, 3 and 5 repeat the main regressions using the different

levels of vehicle type aggregations. Columns 2, 4 and 6 add the additional motorist

fatality rate control variable. The estimated effects of vehicle characteristics are almost

identical regardless of whether motorist fatalities are controlled for. If omitted variable

bias or reverse causation issues existed that were related to the general state of road

safety I would expect main coefficient estimates to change substantially. This result

provides additional evidence that the specification is able to isolate exogenous variation

in the vehicle fleet that has a causal effect on the rate of pedestrian fatalities.

I introduce an array of control variables, some of which require interpolation for

some years. I test the sensitivity of results to the inclusion of the control variables. Due

to the use of metropolitan fixed effects and the relatively gradual change in metropolitan
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Table 4: Effect of Fleet Shares on Pedestrian Fatality Rate, Effect of Vehicle Share
Adjustments

(1) (2) (3) (4) (5) (6)

Light truck share 0.435** 0.412** 0.477**
(0.140) (0.132) (0.127)

SUV share 0.370* 0.302* 0.342*
(0.186) (0.152) (0.151)

Pickup share 0.409* 0.464* 0.448*
(0.169) (0.192) (0.176)

Minivan share 0.607* 0.499* 0.521*
(0.273) (0.224) (0.238)

Motorcycle share -1.069** -3.784** -2.327** -1.078** -3.818** -2.423**
(0.201) (0.712) (0.578) (0.201) (0.714) (0.582)

Vehicle share adjustment: None National State None National State
CBSA fixed effects? Y Y Y Y Y Y
Year fixed effects? Y Y Y Y Y Y
Control variables? Y Y Y Y Y Y

R2 0.051 0.051 0.049 0.051 0.051 0.049
N 7160 7160 7160 7160 7160 7160

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and are
clustered at the CBSA level. The dependent variable is the number of pedestrian fatalities
per 100,000 population. Control variables include: population, share of population with a
high school diploma, share of population with a college degree, median household income,
share of population who are male, CBSA GDP, average model year of vehicles involved in
fatal crashes, share of fatal crashes that involved alcohol, average age of drivers involved in
fatal crashes, and a measure of state health care quality.

demographic and economic conditions, results prove to be insensitive regarding the

inclusion of control variables, suggesting that omitted variable bias is not a significant

concern for the specification (Oster, 2019). I show this empirically in Appendix A.

While all regressions include CBSA fixed effects, this would not control for the

possibility that particular CBSAs have long run temporal trends that are correlated with

both changing vehicle shares and changing road safety. Such trends would potentially

bias estimates if they are not perfectly correlated with the included control variables.

In Appendix C I provide an alternative specification where I add CBSA specific linear

time trends. I find results are almost identical regardless of whether CBSA time trends

are included.

A commonly noted motivation for purchasing a large vehicle is the presumed in-

crease in driver and passenger safety. Potentially, the above estimated increases in
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Table 5: Effect of Vehicle Characteristics on Pedestrian Fatality Rate, Controlling for
Motorist Fatalities

(1) (2) (3) (4) (5) (6)

Vehicle weight (100 kg) 0.032* 0.033*
(0.015) (0.015)

Light truck share 0.477** 0.482**
(0.127) (0.126)

SUV share 0.342* 0.337*
(0.151) (0.149)

Pickup share 0.448* 0.459**
(0.176) (0.176)

Minivan share 0.521* 0.527*
(0.238) (0.237)

Motorcycle share -2.327** -2.235** -2.423** -2.334**
(0.578) (0.573) (0.582) (0.577)

Motorist deaths per 100,000 0.018** 0.017** 0.017**
(0.004) (0.004) (0.004)

Vehicle share adjustment: State State State State State State
CBSA fixed effects? Y Y Y Y Y Y
Year fixed effects? Y Y Y Y Y Y
Control variables? Y Y Y Y Y Y

R2 0.043 0.048 0.050 0.054 0.049 0.053
N 7160 7160 7160 7160 7160 7160

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and are
clustered at the CBSA level. The dependent variable is number of pedestrian fatalities per
100,000 population. Control variables include: population, share of population with a high
school diploma, share of population with a college degree, median household income, share
of population who are male, CBSA GDP, average model year of vehicles involved in fatal
crashes, share of fatal crashes that involved alcohol, average age of drivers involved in fatal
crashes, and a measure of state health care quality.

pedestrian fatalities have been offset by an improvement in motorist safety. I repeat

the panel regression specifications (Equations 1 and 3), but rather than estimate the

effect on pedestrians I estimate the effect of vehicle characteristics on the traffic fatality

rate among drivers and their passengers (Table 6).9 Overall, I find no evidence of a

relationship between the change in vehicle characteristics and changes in motorist fa-

talities across metros. None of the light truck categories appear statistically significant,

9I estimated the same regression on the cyclist fatality rate but found no statistically significant
coefficients. Cyclist fatalities are rare relative to motorist or pedestrian fatalities, causing imprecision
in estimates.
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which suggests that shifting fleet shares have not contributed to improved motorist

safety. The statistically insignificant effect of large vehicles on motorist fatalities can

be attributed to the mechanism proposed in prior literature wherein the safety benefits

imparted to the occupants of large vehicles are counteracted by the negative safety

impacts on other motorists.

Table 6: Effect of Vehicle Characteristics on Vehicle Occupant Fatality Rate

(1) (2) (3) (4) (5)

Vehicle weight (100 kg) -0.077 -0.102
(0.063) (0.094)

Light truck share -0.275
(0.490)

SUV share 0.319
(0.622)

Small SUV share 0.209 0.483
(0.672) (0.743)

Large SUV share 0.686 1.492
(1.069) (1.325)

Pickup share -0.696 -0.698 0.056
(0.742) (0.742) (1.034)

Minivan share -0.357 -0.352 0.135
(0.948) (0.950) (1.019)

Motorcycle share -5.391** -5.299* -5.287* -4.478*
(2.066) (2.052) (2.050) (2.052)

CBSA fixed effects? Y Y Y Y Y
Year fixed effects? Y Y Y Y Y
Control variables? Y Y Y Y Y

R2 0.325 0.325 0.325 0.325 0.326
N 7160 7160 7160 7160 7160

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis
and are clustered at the CBSA level. The dependent variable is the number of driver and
passenger fatalities per 100,000 population. Control variables include: population, share of
population with a high school diploma, share of population with a college degree, median
household income, share of population who are male, CBSA GDP, average model year of
vehicles involved in fatal crashes, share of fatal crashes that involved alcohol, average age of
drivers involved in fatal crashes, and a measure of state health care quality.

The share of motorcycles appears to have a large negative effect on the rate of mo-

torist fatalities. The result is mainly an artifact of motorcycles rarely having passengers.

The average motorcycle involved in a fatal crash carried 1.13 people, while the average
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car carried 1.60, the average light truck carried 1.69 and the average SUV carried 1.79.

In the counterfactual where cars are replaced with motorcycles, the implication is there

would be fewer people on the road generally, which would lower fatalities mechanically.

Motorcycles also have a limited ability to harm the occupants of other vehicles due to

their small size. For interpreting coefficients in the motorist regression results (Table

6), it is possible that larger vehicles may lead to more fatalities simply because they can

accommodate more passengers. Therefore, coefficient estimates for larger vehicles may

be biased upwards slightly. Notably, this source of bias is not relevant to the pedestrian

findings.

The insignificant effect of light trucks on motorist fatalities contrasted with the

highly significant results of the pedestrian fatality regressions provide additional support

to the validity of the main estimation strategy. If the meaningful variation was related to

omitted variables regarding general changes in road safety I would expect the motorist

regressions to also indicate significant effects.

While I find null effects of vehicle shares on aggregate motorist safety, drivers

may be incentivized to drive larger vehicles to improve their own safety and that of

their passengers. I find some evidence that larger vehicle types improve the safety

of their occupants. For each metro-year, I calculate the share of deaths among vehicle

occupants across each vehicle type. In Table 7 regressions I include the same fixed effects

and control variables as in Equations 1 and 3 but use the share of motorist fatalities

that occurred in each vehicle category as a dependent variable and regress this against

that vehicle type’s share of the fleet, using the registration adjusted fleet shares. If all

vehicles were equally safe for their occupants, I would expect each coefficent in Table 7

to be equal to one. If, for example, the share of light trucks on the road increased by 10

percentage points and light trucks provided no more or less safety to their occupants,

I would expect to see a proportional increase in the share of motorist fatalities that

occurred in light trucks. Coefficient estimates below one in Table 7 indicate the vehicle

is safer for its occupants than the average vehicle on the road. Results suggest that cars

provide average safety to their occupants, while light trucks provide improved occupant

safety and motorcycles provide significantly lower occupant safety. Within the light

truck category, I estimate that Large SUVs provide the largest improvement in the

safety of the vehicle’s own occupants. I find that a 10 percentage point increase in a

metro vehicle fleet’s share of large SUVs relates to only a 7.8 percentage point increase

in the share of fatalities among the occupants of Large SUVs. Jointly considering that

light trucks do not appear to improve aggregate road safety, but do improve driver
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and occupant safety suggests that driving a larger vehicle offloads fatality risk from the

occupants to other road users.

Table 7: Effect of Increase in Vehicle Fleet Share on Vehicle Specific Motorist Fatality Share

Coefficient Estimate R2

Car share 0.983** 0.710
(0.012)

Light truck share 0.931** 0.666
(0.013)

SUV share 0.875** 0.577
(0.019)

Small SUV share 0.894** 0.576
(0.020)

Large SUV share 0.781** 0.522
(0.019)

Pickup share 0.795** 0.659
(0.013)

Minivan share 0.822** 0.511
(0.019)

Motorcycle share 1.284** 0.900
(0.017)

Each estimate corresponds to a separate regression. Significance levels: ∗ : 5% ∗∗ :
1%. Standard errors are shown in parenthesis and are clustered at the CBSA level. The
dependent variable is the share of annual motorist deaths that occurred among occupants of
the particular vehicle type. Control variables include: population, share of population with
a high school diploma, share of population with a college degree, median household income,
share of population who are male, CBSA GDP, average model year of vehicles involved in
fatal crashes, share of fatal crashes that involved alcohol, average age of drivers involved in
fatal crashes, and a measure of state health care quality.
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4.2 Counterfactual Analysis

I use coefficient estimates to estimate counterfactual scenarios of alternative vehicle

adoption. I use the main vehicle share regression coefficients (Table 3, column 3)

to estimate the number of pedestrian fatalities that were caused by the presence of

particular vehicle types, compared to the counterfactual scenario where those vehicles

were replaced with cars. I multiply the estimated partial effects by the fleet share held

by that vehicle type in each year and then scale the figure up by the overall population

across all metros in the data set. This empirical exercise can be characterised as a

“back-of-the-envelope” approach to roughly quantifying the magnitude of effects, given

that the approach ignores the role of standard errors in estimates and given the low

explanatory power of the overall model.

Figure 6 graphs the implied number of pedestrian fatalities caused by the light truck

categories, compared to the counterfactual where all of these vehicles were substituted

with cars. Across 2000-2019 I estimate that 8,131 pedestrian lives would have been

saved if all light trucks had been cars. The reduction would be equal to avoiding

9.5% of all pedestrian deaths. In 2000, converting all light trucks to cars would have

spared 353 pedestrians, while by 2019 the figure had grown by 30% to 459 pedestrians.

Accounting for the overall population increase of the metros, the number of pedestrian

deaths attributable to light trucks increased by 7.6% on a per capita basis.

I find an increasing impact of SUVs on pedestrian fatalities. In 2000, if all SUVs

were substituted with cars, there would have been 99 fewer pedestrian fatalities across

all metros. By 2019, the substitution of SUVs for cars would have averted 227 pedestrian

fatalities. The change represents a 129% increase or 90% on a per capita basis. Across

all years in the sample period I estimate that replacing all SUVs with cars would have

averted 3,283 pedestrian deaths. Maintaining the share of SUVs across the study period

at 2000 levels and replacing that growth with cars would have averted 1,084 pedestrian

fatalities.

Figure 6 shows how the categories of light trucks changed in their contribution

to pedestrian deaths over the study period. The sharp increase in SUVs as a share

of metropolitan consumer vehicles (13.6% to 25.7%) caused a significant increase in

pedestrian deaths. However, over this period the share of pickups and minivans both

fell. Pickups as a share of vehicles fell from 15.5% to 13.8% and minivans fell from 9.5%

to 5.3%. I estimated in Table 3 that both pickups and minivans have a significantly

harmful effect on pedestrian safety relative to cars. The decline in pickups and minivans
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Figure 6: Annual Pedestrian Deaths Averted if all Light Trucks had been Cars

Relying on estimated partial effects, the figure plots the number of pedestrian fatalities that
would have been averted if all light trucks were replaced by cars. Over the entire study period,
converting all light trucks to cars would have prevented 8,131 pedestrian deaths.

worked to counteract the negative pedestrian safety effects of increased SUVs.

As noted in the introduction, there was a substantial increase in pedestrian fatal-

ities during the 2000-2019 period. Between 2000 and 2019 the pedestrian fatality rate

across all metro areas increased by 11%, from 1.72 to 1.91 deaths per 100,000 residents.

The overall rise in light trucks over this period was modest, as the rise in SUVs was

buffered by the decline in pickups and minivans. Table 3, column 3 estimates imply

that if the prevalence of all light truck categories had remained at the 2000 level across

the study period there would have been 314 fewer pedestrian deaths between 2000 and

2019, including 31 fewer in 2019. Rather than being 1.91 deaths per 100,000 in 2019,

the pedestrian fatality rate would have been 1.90 if light truck shares had remained at

2000 levels. The result suggests that a shift in the vehicle fleet is not responsible for

the overall increase in pedestrian deaths. However, converting all light trucks to cars

would have reduced the rate to 1.75.

The above estimates ignore incidents occurring outside of metropolitan areas.

Metropolitan areas contained 77% of the US population across the study period. To the

extent that non metropolitan areas are experiencing negative pedestrian safety effects
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from larger vehicles, the estimates understate the national effect. However, the effects

in less urbanized areas may be markedly different.

A single consumer’s decision to substitute a car for a light truck raises the predicted

number of pedestrian deaths marginally. I calculate the marginal external cost of a

consumer switching from a car to a light truck. To calculate marginal external costs

I use the US Department of Transportation’s value of a statistical life ($10.45 million

in 2020 USD), main regression estimates (Table 3, column 3) and the fact that there

were 47.6 registered vehicles in the US for every 100 residents according to the FHWA

2019 data. The marginal external cost of switching from a car to a SUV, pickup

truck, or minivan in terms of increased pedestrian fatalities is $75 , $98 , and $114

respectively. Optimal Pigouvian taxes that internalize the external costs of pedestrian

fatalities attributable to driving a light truck over a car could be implemented with

annual taxes by vehicle types that are equal to these marginal external costs. These

taxes would be in addition to other taxes that may address other externalizes of vehicles.

Assuming a 10 year vehicle lifespan suggests that if the tax were applied at the time of

sale, the one time tax would need to be roughly 10 times the rates calculated above.

For example, SUVs would be assessed a point of sale tax equal to $750 in order to

internalize the pedestrian fatality risk.

Using the value of a statistical life, the implied economic cost of the 8,131 pedes-

trian deaths attributable to the presence of light trucks between 2000 and 2019 is $85

billion. The possibility of reducing the pedestrian safety externalities imposed by large

vehicles through regulation could provide significant societal welfare improvements.

Reducing the prevalence of large vehicles could also affect the safety of motorists.

However, I find no evidence of a relationship between larger vehicles and improved

motorist safety in the aggregate. The finding is supported by prior literature (Anderson,

2008; White, 2004).

Switching from a car to a light truck also carries additional externalizes. Excess air

pollution is a particularly large externality that arises from the comparatively low fuel

economy of larger vehicles. In EPA data on new, 2019 vehicles, the average reported

fuel economy is 29.9 miles per gallon (mpg) for a car, 27.5 for a SUV, 19.0 for a pickup,

and 22.4 for a van (EPA 2020 Automotive Trends Report). I assume vehicle miles

traveled does not depend on vehicle choice, and average annual vehicle miles traveled

for a private vehicle in the US is 11,500.10 The numbers imply that switching from

10Federal Highway Administration. Highway Statistics 2018, Table VM-1.
https://www.fhwa.dot.gov/policyinformation/statistics/2018/pdf/vm1.pdf
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a car to a SUV, pickup, or van results in an additional annual consumption of 34,

221 or 129 gallons of fuel, respectively. A recent National Academy of Science report

found that the marginal external cost in terms of air pollution of a gallon of burned

vehicle fuel is $0.81 (National Academies of Sciences, Engineering, and Medicine, 2020).

Switching from a car to a SUV, pickup or van therefore implies annual excess external

air quality costs of $28, $179, and $104 respectively. The external costs of light trucks

on pedestrian fatalities appear roughly the same magnitude as the external cost of

excess air pollution.

5 Conclusion

I estimate that the popularity of light trucks on US roads is responsible for a

large number of pedestrian deaths. If all light trucks were replaced with cars, over

8,000 pedestrian deaths would have been averted between 2000 and 2019. Vehicle body

types appear to be an important determinant of pedestrian deaths in the aggregate,

strengthening arguments made in the transportation safety literature regarding the link

between larger light trucks and more severe pedestrian injuries.

Average vehicle size has undergone a sustained increase over the past 20 years, with

no signs of abating. If the popularity of large vehicles continues to rise there is likely

to be a corresponding increase in pedestrian fatalities. Given strict federal regulation

of vehicle safety standards, it is perhaps surprising that there is limited legislation

that restricts the overall size and body type of vehicles with the intent of improving

pedestrian safety. It is unlikely that the purchase decision of vehicle owners will take

account of the safety externalities that large vehicle body types impose on pedestrians

(Lindberg, 2005). These facts suggest there could be societal benefits from restricting

sales of large vehicles, or implementing a Pigouvian tax on particular vehicles, as was

suggested in Anderson (2008), Anderson and Auffhammer (2014) and Li (2012).

The shift in vehicle types over the study period is unable to account for the dra-

matic rise in overall pedestrian deaths. While the increased popularity of SUVs caused

a significant number of deaths, the declining popularity of pickup trucks and minivans

offset the majority of this trend. Other changes to vehicles and road conditions over

this period are deserving of future study and may be able to account for the rise in

aggregate pedestrian deaths. In particular, the rapid shift in personal consumer tech-

nologies may have impacted road safety during the same period. The proliferation of

smartphones among both drivers and pedestrians presented a new distraction for road

27



users (Lin and Huang, 2017; Ortiz et al., 2018; Vollrath et al., 2016). Additionally, the

decision of automakers to include complex navigation and entertainment consoles in

vehicles may have served to reduce drivers’ ability to monitor for pedestrians.
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Appendix A

In the main tables I omit the partial effects of control variables to focus on the

effects of vehicle fleet characteristics. Figure A1 provides information on the estimated

coefficients of control variables. I show results that correspond to the estimates from

Table 3, column 3. The estimated partial effects of control variables are very similar

across all specifications in Table 3.

A1. Control Variable Coefficient Estimates

Coefficient estimates for control variables from the main model specification are shown. I
convert the units of some variables to improve the readability of the chart. All “shares” range
from 0-1. Median household income is in $10,000s, population is in millions, GDP is in billions
and average vehicle year and age are in 100s of years.

I find two control variables have a statistically significant effect on the pedestrian

fatality rate; average driver age and the rate of alcohol related incidents. An increase

in the average age of drivers involved in fatal crashes within a metro is correlated with

fewer pedestrian fatalities. The negative correlation potentially suggests that driver

experience improves the safety of pedestrians (Deery, 1999). The share of fatal crashes
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that involved alcohol is correlated with fewer pedestrian fatalities. This at first seems

counterintuitive; however, a rise in the share of incidents involving alcohol could be

caused by increased drunk driving, or equally by a decline in incidents among sober

drivers. Among motorist fatalities, 35% were the result of incidents involving alcohol,

while among pedestrian fatalities, only 27% of incidents involved alcohol. Therefore, a

rise in the share of incidents involving alcohol is correlated with fewer pedestrian deaths

but more motorist deaths. I find the drunk driving control variable is significant and

positively related to motorist deaths in the Table 6 regressions.

Despite some control variables being statistically significant, their inclusion does

not significantly affect the main results of the paper. Table A1 repeats the main regres-

sions of the paper but omits all metro-year control variables. Comparing the results to

those of Table 3 demonstrates that estimates are insensitive to the inclusion of metro-

year level control variables.
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Table A1. Effect of Vehicle Characteristics on Pedestrian Fatality Rate, No Control
Variables

(1) (2) (3) (4) (5)

Vehicle weight (100 kg) 0.032* 0.005
(0.015) (0.019)

Light truck share 0.461**
(0.127)

SUV share 0.342*
(0.152)

Small SUV share 0.276 0.264
(0.176) (0.176)

Large SUV share 0.564* 0.528
(0.274) (0.295)

Pickup share 0.410* 0.410* 0.376
(0.177) (0.177) (0.218)

Minivan share 0.502* 0.505* 0.484
(0.237) (0.237) (0.260)

Motorcycle share -2.424** -2.524** -2.514** -2.551**
(0.579) (0.583) (0.583) (0.606)

CBSA fixed effects? Y Y Y Y Y
Year fixed effects? Y Y Y Y Y
Control variables? N N N N N

R2 0.037 0.044 0.044 0.044 0.044
N 7160 7160 7160 7160 7160

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and are
clustered at the CBSA level. The dependent variable is the number of pedestrian fatalities
per 100,000 population.
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Appendix B

Table B1 provides estimates of the partial effect of vehicle fleet characteristics

on the pedestrian fatality rate with analysis completed at the state level. Table B1

follows the same model specification as the metropolitan level analysis but uses states

as the unit of observation. Column 1 estimates the effect of vehicle weight derived from

EPA data, columns 2-4 use fleet estimates from FHWA vehicle registration data and

columns 5-7 use FARS data. In estimating state fleet shares from FARS data I perform

the vehicle share adjustment according to Equation 2.

Table B1. Effect of Vehicle Characteristics on Pedestrian Fatality Rate, State Level
Analysis

(1) (2) (3) (4) (5) (6) (7)

Vehicle weight (100 kg) -0.067 -0.068 -0.086
(0.070) (0.071) (0.073)

Light truck share -0.782 -0.324
(0.564) (0.422)

SUV share -0.949 -0.974 -0.790 -0.483
(1.033) (1.007) (0.501) (0.438)

Pickup share -1.184 -1.162 -0.175 0.381
(1.006) (1.022) (0.522) (0.460)

Minivan share 0.250 0.116 0.453 0.850
(1.328) (1.280) (0.512) (0.560)

Motorcycle share -2.675** -2.768** -2.797** -2.030 -1.964 -1.461
(0.998) (0.999) (1.024) (1.424) (1.461) (1.474)

State fixed effects? Y Y Y Y Y Y Y
Year fixed effects? Y Y Y Y Y Y Y
Control variables? Y Y Y Y Y Y Y
Fleet data source . FHWA FHWA FHWA FARS FARS FARS

R2 0.366 0.368 0.368 0.372 0.367 0.371 0.374
N 1000 1000 1000 1000 1000 1000 1000

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and are
clustered at the state level. The dependent variable is the number of pedestrian fatalities per
100,000 population. Control variables include: population, share of population with a high
school diploma, share of population with a college degree, median household income, share
of population who are male, CBSA GDP, average model year of vehicles involved in fatal
crashes, share of fatal crashes that involved alcohol, average age of drivers involved in fatal
crashes, and a measure of state health care quality.

Unlike the metro level analysis, I find no statistically significant effects of light

trucks or vehicle weight on pedestrian fatalities. A number of reasons could contribute

to this. First, for columns 2-4, FHFA data is reported by individual states and different
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states changed reporting practices at different times throughout the study period, which

undermines the identification strategy by introducing time varying changes in the in-

dependent variable of interest across the units of analysis. Second, using metropolitan

areas may be more sensible because they capture units that share common transporta-

tion systems whereas aggregating to states may erase important statistical variation.

Finally, the sample size is reduced by 86% when switching from metropolitan to state

analysis, drastically reducing the statistical power of the estimates.
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Appendix C

I apply a conventional difference in difference regression design as the main model

in the above analysis. In Table C1 I repeat the main analysis but add controls for metro

specific linear time trends. The models estimated are identical to Equations 1 and 3,

with the addition of a vector of metro level linear time trends.

Table C1. Effect of Vehicle Characteristics on Pedestrian Fatality Rate, Linear Metro
Time Trends

(1) (2) (3) (4) (5)

Vehicle weight (100 kg) 0.023 -0.014
(0.015) (0.021)

Light truck share 0.460**
(0.129)

SUV share 0.301
(0.165)

Small SUV share 0.266 0.306
(0.192) (0.192)

Large SUV share 0.416 0.530
(0.278) (0.300)

Pickup share 0.468* 0.467* 0.574*
(0.182) (0.182) (0.237)

Minivan share 0.606* 0.607* 0.676*
(0.244) (0.244) (0.270)

Motorcycle share -1.905** -1.976** -1.973** -1.855**
(0.611) (0.617) (0.616) (0.649)

CBSA fixed effects? Y Y Y Y Y
Year fixed effects? Y Y Y Y Y
CBSA time trends? Y Y Y Y Y
Control variables? Y Y Y Y Y

R2 0.121 0.126 0.126 0.126 0.126
N 7160 7160 7160 7160 7160

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and are
clustered at the CBSA level. The dependent variable is the number of pedestrian fatalities
per 100,000 population. Control variables include: population, share of population with a
high school diploma, share of population with a college degree, median household income,
share of population who are male, CBSA GDP, average model year of vehicles involved in
fatal crashes, share of fatal crashes that involved alcohol, average age of drivers involved in
fatal crashes, and a measure of state health care quality.

I find results are robust to the inclusion of metro time trends, with point estimates
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and standard errors changing very little between Tables 3 and C1. The estimate of

vehicle weight’s impact on pedestrian fatalities falls short of statistical significance

when time trends are added (column 1), providing evidence that weight is relatively

less important than vehicle body type.

39


	Introduction
	Data
	Methodology
	Results
	Main Results
	Counterfactual Analysis

	Conclusion

