
Sassafras and Semi-Anonymous Single Leader Election

Jeffrey Burdges, Handan Kılınç Alper, Alistair Stewart, and Sergey Vasilyev

Web3 Foundation

Abstract. A single-leader election (SLE) is a way to elect one leader randomly among the
parties in a distributed system. If the leader is secret (i.e., unpredictable) then it is called
a secret single leader election (SSLE). In this paper, we model the security of SLE in the
universally composable (UC) model. Our model is adaptable to various unpredictability
levels for leaders that an SLE aims to provide. We construct an SLE protocol that we call
semi-anonymous single leader election (SASLE). We show that SASLE is secure against
adaptive adversaries in the UC model. SASLE provides a good amount of unpredictability
level to most of the honest leaders while it does not provide unpredictability to the rest of
them. In this way, we obtain better communication overhead by comparing the existing
SSLE protocols. In the end, we construct a PoS-protocol (Sassafras) which deploys SASLE
to elect the block producers. Sassafras benefits from the efficiency of SASLE and gains
significant security both to grinding attacks and the private attack as shown by Azouvi
and Cappelletti (ACM AFT 2021) because it elects a single block producer.

1 Introduction

Leader election is required for many distributed systems for security and efficiency mainly be-
cause it distributes the tasks and minimizing the coordination. Having a single leader introduces
the single point of failure. The leader may be malicious or honest leaders can be attacked e.g.
by a denial-of-service (DoS) attack. One solution to this is to frequently change the leader and
to have a secret leader election protocol which hides the leader until they announce themself.

Leader election mechanism is inevitable for blockchain protocols if we define the leader as
the node who is eligible to publish a block with respect to the rules of the blockchain. One
very known election mechanism on blockchain protocols is proof-of-work. Here, a node (called
miner) is elected as a leader if it generates a block of which hash is less than a threshold. Some
proof-of-stake (PoS) protocols [17,28,18,22] use the similar approach as well with respect to the
stake instead of computational power. Even though this election mechanism provides secrecy of
the leader(s) and requires no communication with the other nodes, it has some drawbacks. The
main problem is that the outcome is probabilistic since the leaders are selected in expectation
with respect to their computational power or stake. Therefore, there can be multiple leaders or
no leaders at all. If the election outcome has more than one leaders then the efforts of the leaders
except one will be wasted because they are not aware of other leaders. If the election outcome has
no leader then the time to extend the blockchain will be wasted. Besides the wasting problem,
it has been shown by Azouvi and Cappelletti [1] that PoS-protocols with single secret leader
election (SSLE) provides higher security comparing to the probabilistic secret leader election.
Therefore, it is critical to have an election mechanism that selects only one leader to generate a
block.

SSLE is a distributed protocol that selects only one leader in a slot (round) and hides the
leader till the leader announces itself by providing proof. SSLE is secure [5] if it provides unique-
ness (i.e., electing only one leader), unpredictability (i.e., hiding the leader), and fairness (i.e.,

having the same chance to become a leader). One can formulate SSLE as a multi-party com-
putation (MPC) protocol where parties run a function with private inputs and obtain private
outputs. However, MPC does not scale well in blockchain protocols because it requires commu-
nication with all parties. The other solution is using shuffle protocols [5,14,14] which shuffles
parties randomly and selects e.g., the first party after shuffling. They are better than MPC in
terms of communication and computational complexity but blockchain protocols scale better
with less complexity considering the existence of too many parties.

We introduce a batched semi-anonymous secret single leader election, SASLE, that uses
a cryptographic primitive known as a RingVRF [7]. A RingVRF provides private verifiable
randomness, their VRF output, associated with nodes’ keys. The node can provide proof of
this VRF output without having to reveal its identity, only that they are one of a ring of keys.
Later they can provide proof that it was their randomness specifically. If nodes had access
to an anonymous broadcast functionality, then they can broadcast their VRF output with an
anonymous RingVRF proof, the protocol can sort these outputs, and this sorting determines
a leader order. Each leader then proves that this is their output when it is their turn to be a
leader. Unfortunately, broadcast mechanisms that provide good anonymity are either complex
or are not live when nodes misbehave. We utilise a semi-anonymous broadcast mechanism, one
which can reveal or conceal the identity of the broadcaster both with reasonable (typically Ω(1))
probability, and then we get a semi-anonymous leader election with similar guarantees.

We give a blockchain consensus protocol Sassafras utilising our leader election protocol
SASLE for which it will be sufficient that there are more honest and anonymous leaders than
malicious ones. We do not need the leader election to provide good anonymity for every honest
leader to provide this and so our semi-anonymous protocol suffices. In a nutshell, our contribu-
tions are as follows:

– We define a single leader election functionality in Fsle to define the security of SLE in
the universal composable (UC) model. Our functionality Fsle is adaptable to different un-
predictability levels from Boneh et al.’s unpredictability [5] to no-predictability. Instead of
covering the protocols where all parties are equal, Fsle can be deployed by protocols where
parties have different power. This is a useful property in PoS blockchain protocols where the
amount of stake determines the chance of being a leader. In short, we give a definition of
generic single leader election definition to be deployed by any SLE protocol with different
unpredictability and equality levels.

– We construct a single leader election protocol that we call semi-anonymous single leader
election (SASLE). We show SASLE is secure against adaptive adversaries in the UC model.
Compared the existing SSLE protocols [5,14,15,19], SASLE has drastically small message
complexity in the strongest adversarial model. It is semi-anonymous because we do not pro-
vide the same unpredictability level for all honest parties. This is the cost that we pay while
we enjoy a significant gain in message sizes comparing to the existing protocols [5,14,15,19].

– We construct a PoS-protocol that we call Sassafras (Semi-anonymous sortition (of) staked
assignees (for) fixed-time rhythmic assignment (of) slots). Sassafras elects the leaders by
Fsle. We show that Sassafras is a secure blockchain protocol (has liveness and persistence)
as long as Fsle provides certain level of unpredictability, fairness and robustness. Our analysis
shows that Sassafras can replace Fsle with SASLE in the real world. Therefore, Sassafras is
the first PoS-blockchain protocol which elects single leader and is realizable without huge
costs on-chain thanks to the lightweight communication overhead of SASLE.

2

1.1 Related Works

Single Secret Leader Election (SSLE): Boneh et al. [5] formalize SSLE in the standard
model. They provide definitions of the fairness, uniqueness, robustness and unpredictability.
They propose a construction that works in three types of classes: Indistinguishability obfuscation
(IO), learning with error (LWE), threshold fully homomorphic encryption (TFHE), decisional
Diffie-Hellman (DDH) and random shuffles. Because of the inefficiency of IO in the real-world
executions, it is not practical even though its communication complexity is O(1) and its unpre-
dictability level is 1

n−m where m is the number of malicious parties. TFHE’s communication

complexity is O(t) and its unpredictability level is 1
n−m as long as m < t where t is the threshold

for TFHE. TFHE-based construction is more realizable than IO-based one but it is still not good
for the practical constructions. The most practical version among the constructions by Boneh et
al. [5] is based on DDH and random shuffles. It requires O(n) communication for each election. It
can be reduced to O(

√
n) but the unpredictability level reduces to 1√

n−m in this case. Ethereum

proposes a SSLE protocol based on the DDH and random shuffles [5] that is called Whisk [19].
Catalano et al. [14] formalize the SSLE in the UC model. They propose a construction based
on public-key encryption with key-word search (PEKS). Their round complexity is in the worst
case is O(log2 n) + 3 in the worst case with O(t)-communication complexity. Its communication
complexity is as good as TFHE-based construction and it has more practical realizations than
TFHE. Catalano et al. [15] convert the construction of Boneh et al. [5] based on DDH and
random shuffle into a new protocol which is adaptively secure in the UC model. [15] is the only
SLE protocol which is secure against adaptive adversaries in the UC model except our protocol
SASLE. They succeed to keep the communication cost the same as Boneh et al.’s version while
providing a stronger security.

SASLE elects the leaders simultaneously for eplen ≥ 1 slots instead of executing the election
sequentially for each slot and it is based on ring verifiable random function (rVRF) [7] which
has efficient realizations (see Appendix A). In our protocol, each party communicates with other
parties with a drastically smaller message size compared to the shuffle solutions [5,15,14,19] as
we discuss in Section 6. The small message size reduces the on-chain cost significantly for our
blockchain protocol Sassafras which deploys SASLE. Although our protocol is better in terms of
communication overhead, we sacrifice unpredictability level. If α = n−m

n is our ratio of honest
parties ala Byzantine agreement, then in expectation 1−α of our slots will not be anonymous in
SASLE, while the rest have unpredictability level of close to 1

αn . We achieve these levels using
our own simplistic optimized mix network, but alternative anonymous networking schemes could
perhaps improve upon these. We caution however that anonymous network designs typically
ignore collusion between senders and routers, which worsens liveness for Sassafras. We show
that our protocol SASLE is secure in the UC model with an adaptive adversarial model.

PoS-protocols with Secret Leader Election: Most of the PoS-protocols [30,17,28,18,16]
elect the leaders secretly and probabilistically for slots with a leader election protocol which do
not guarantee that there will be only one leader. Sleepy consensus [30] requires a random oracle
to elect a leader(s) which can be replaced by a common reference string and pseudo random
functions. Snow White [17], the family of Ouroboros protocols [28,18,2], Algorand [16], Dfinity
[22] execute the leader election based on a randomness beacon which is updated periodically.
In those, each party checks whether they are elected as a leader with a random function where
the randomness is provided with the randomness beacon. Different than probabilistic leader
election (PLE), we suggest using SASLE in our new PoS-blockchain protocol Sasafrass. Thanks
to SASLE, Sassafras selects only one leader in each round and the significantly many rounds

3

of Sassafras provides almost perfect secrecy for the leader. In our security analysis, we consider
the rounds which do not provide secrecy for their honest leaders as malicious rounds. The
downside of this is that the malicious stake ratio in Sassafras should be less than around 30%
which is 50% in most of the PLE-based PoS protocols. Azouvi and Cappelleti [1] show that
single secret leader election protocols provide higher security than the PLE protocols for private
attacks. Specifically, they show that the persistence parameter (or common prefix parameter)
in SSLE against private attacks in a synchronous network with a perfect randomness beacon
is decreased by roughly 25% against a 33% or 25% malicious stake ratio. The same parameter
decreases %70 with a (not perfect) randomness beacon which is used in Sassafras and most of
the other PoS blockchains [28,18,2,30,17,16]. Therefore, Sassafras benefits the higher security
level and efficiency that SASLE provides (faster finality) by reducing persistence parameter if we
compare it with PLE-based protocols with the malicious stake ratio less than 0.3. The trade-off
here is that PLE based PoS protocols provides security with more adversarial power but they
are significantly slower (70 %) to finalize the blocks, while Sassafras assumes less adversarial
power but finalizes the blocks significantly faster.

1.2 Overview of the paper

In Section 2, we give the cryptographic primitives and security definitions that we need to build
SASLE. Then, we introduce our adversarial model and define the security of SLE in the UC
model in Section 3. After giving all buildings block, we describe our protocol SASLE and analyse
its security in Section 4. Finally, we introduce our PoS-protocol Sassafras in Section 5 in the UC
model and show how to realize it in the real world in Section 5.2 and Section 5.3. We conclude
our paper by making more concrete comparison of the message complexity with the existing
SSLE protocols in Section 6.

2 Preliminaries

Universally Composable (UC) Model: The UC model [8,9] consists of an ideal functionality
as a trusted entity in the ideal world. A functionality behaves as a trusted party and defines the
execution of a protocol in the ideal world. We informally call that a real-world execution of a
protocol (without a trusted entity) in the real world is UC-secure if it is indistinguishable from
the version of this protocol with the ideal functionality F in the ideal world. In UC, a protocol π
is defined with distributed interactive Turing machines (ITM). Each ITM has an inbox collecting
messages from other ITMs, adversary A or environment Z. Whenever an ITM is activated by
Z, the ITM instance (ITI) is created. We identify ITIs with an identifier consisting of a session
identifier sid and the ITM identifier pid. A party P in the UC model is an ITI with the identifier
(sid, pid).
π in the Real World: Z initiates some ITM’s of π and the adversary A to execute an instance of
π with the input z ∈ {0, 1}∗ and the security parameter κ. The output of a protocol execution
in the real world is denoted by EXEC(κ, z)π,A,Z ∈ {0, 1}. Let EXECπ,A,Z denote the ensemble
{EXEC(κ, z)π,A,Z}z∈{0,1}∗ .
π in the Ideal World: The ideal world consists of an incorruptible ITM F which executes π
in an ideal way. The adversary Sim (called simulator) in the ideal world has ITMs which for-
ward all messages provided by Z to F . The output of π in the ideal world is denoted by
EXEC(κ, z)F,Sim,Z ∈ {0, 1}. Let EXECF,Sim,Z denote the ensemble {EXEC(κ, z)F,Sim,Z}z∈{0,1}∗ .
We refer to [8,9] for further details about the UC-model.

4

Definition 1. (UC-security of π) Let π be the real-world protocol and F be the ideal-world
functionality of π. We say that π UC-realizes F (π is UC-secure) if for all PPT adversaries A
in the real world, there exists a PPT simulator Sim such that for any environment Z,

EXECπ,A,Z ≈ EXECF,Sim,Z

where ≈ shows that two ensembles are indistinguishable [8,9].

π in the Hybrid World: In the hybrid world, the parties in the real world interact with some
ideal functionalities. We say that a protocol π in hybrid world UC-realizes F when π consists
of some ideal functionalities.

SASLE consists of two basic primitives: State machine replication to agree on a linearizable
log 1 and ring VRF [7] to provide anonymity to leaders during the election process. We review
these primitives shortly.
State Machine Replication (SMR): We define SMR over a set of parties P =
{P1,P2, . . . ,Pn} initiated with sid. Each party maintains a replica of the state machine which
is a deterministic programme receiving a set of inputs and outputs an ordered set LOG with
respect to an interactive transition algorithm Transition. Transition takes as an input LOG
and a list of cmds fetched from the network (See Figure 1) and outputs an updated LOG with
respect to cmds. One can imagine LOG as a set of cmds. We assume a setting where the time is
divided into sequential time units [28,18,6,17]. Each party has a clock Fclock [2,29,11,25] which
shows the current slot and increases monotonically.

In our SMR that we define in Algorithm 1, each party fetches messages from the network
when the current slot, learnt from Fclock, is updated. Then, each party updates their local ordered
set LOG according to the new messages.

Algorithm 1 StateMachine(sid)

1: LOG = ∅
2: input = ∅
3: sl← Fclock // learns the current slot sl from Fclock

4: while true do
5: slc ← Fclock

6: if slc ≥ sl then
7: fetch messages from the network (Figure 1)
8: receive cmds from the network
9: sl = slc + 1
10: input.Append(cmds)
11: LOG = Transition(LOG, input)

We call that cmd ∈ LOG is final if it is marked as final by the algorithm Transition. SMR
is secure if it satisfies the following properties.

Definition 2 (Persistence). Given a SMR defined over parties in P running Algorithm 1,
persistence guarantees that if cmd ∈ LOG of an honest party’s state machine is marked as final,
then state machines of other honest parties mark cmd as final.

Definition 3 (Liveness). Given a SMR defined over parties in P running Algorithm 1, liveness
guarantees that a command cmd ∈ LOG sent by an honest party becomes final in ∆live-slots.

1 Linearizability means orderability of logs

5

Ring Verifiable Random Function: A ring VRF [7] (rVRF) is a ring signature which also
lets parties output a random number with respect to the set of public keys (called ring) and a
public key. In this sense, it operates like a VRF but only proves the random output comes from a
specific list without giving any information about which key. We give the ring VRF functionality
Frvrf in Figure 4 in Appendix A. In a nutshell, the functionality works as follows:

[Key Generation]: Given the message (keygen, sid) from an honest party, Frvrf returns a veri-
fication key pkrvrf to the party.

[Honest rVRF Signature]: Given the message (sign, sid,PK, pkrvrf ,m, ass), Frvrf returns a
random anonymous key W , a signature σ, and a random output y for the message m, pkrvrf if
pkrvrf ∈ PK. The functionality makes sure that (pkrvrf ,m) is associated with one anonymous key
and one random output. So, when a party comes with the same message m, a different or the
same ring PK′ where pkrvrf ∈ PK′, Frvrf outputs the same W and y but the signature σ may
change. Whenever Frvrf generates a signature, it creates a record [m, ass,W, σ, 1] to record σ is
a valid signature of m and ass signed by an anonymous key W . The parameter ass is used to
bind the ring VRF signature to a context e.g., to prevent replay attacks. Also, σ serves as a
signature of ass which we use this property to remove the necessity of key evolving signatures
in Sassafras which deploys SASLE (See Section 5.2).

[Verification]: Given the message (verify, sid,PK,W,m, ass, σ), if σ is a valid signature i.e.,
there exists a record [m, ass,W, σ, 1], Frvrf returns 1 (verified) and the random output y that
corresponds σ. Otherwise it returns 0. Verification mechanism makes sure that σ is not a forgery
and it does not break the uniqueness property i.e., (m,PK) generates at most |PK| verified
random outputs.

Remark that the verification process does not need the public key of the signer in order to
verify the signature and output its random output. Therefore, the verification process does not
reveal the signer’s verification key. This is the most subtle difference of ring VRFs and VRFs.
If a signer ever wants to reveal its identity i.e., link a random output y to its verification key
pkrvrf , the signer should sign the same message with a ring PK = {pkrvrf} and obtain σ. In this
way, when another party verifies σ with PK = {pkrvrf} and obtains y, he deduces that y is the
random output of m and pkrvrf .

In a nutshell, Frvrf, when given as input a message m and a set PK of participant, allows
to create |PK| possible random outputs that appear independent from the inputs. The output
can be verified to have been computed correctly by one of the participants in PK with the ring
signature without revealing who they are. The author of the ring signature can show that the
ring signature was generated by them and no other participant could have done so.

We use an extension of Frvrf, which is called Fsrvrf, for the case where the chance of being a
leader is not the same for all parties. Fsrvrf computes another random value that is secret. Any
party can verify that the secret value of the message satisfies a certain relation without learning
any clue about the secret value. Fsrvrf has the following procedures and a parameter R which is
a relation:

[Secret random element proof]: Given a message (secret rand, sid,PK, pkrvrf ,W, y,m), it ver-
ifies that y is a random output generated for (PK,W,m). Then it selects a secret random element
η if it is not defined before for (PK,W,m). Then, it checks whether ((m, y,PK), (η, pkrvrf)) ∈ R.
If it is the case it generates π for (PK,W,m) as a proof and outputs η and π. Otherwise, it only
outputs η.

[Secret Verification]: Given a message (secret verify, sid,PK,W,m, π), it verifies if π is gen-
erated for (PK,W,m). Otherwise, it does not verify.

6

Fsrvrf operates similar to the non-interactive zero-knowledge (NIZK) functionality [21] except
that the witness is a random element selected by Fsrvrf. We note that if all parties are equal in
SASLE, deploying Frvrf is enough.

3 Single Leader Election

We first introduce the adversarial and the communication model and then define SLE.

3.1 Adversarial and Communication Model

Adversarial Model: Our model consists of n ITIs called parties. We denote by P the set of
parties. Each party Pi ∈ P is run with the input sti called stake given by Z. DS is the stake
distribution of the protocol where DS [Pi] = sti∑

Pj∈P
stj

. Stake of a party Pi defines the probability

that Pi is the leader of a slot i.e., ρi = DS [Pi]. We assume that all parties and functionalities have
the security parameter λ even if we do not explicitly write it. We assume that Z can corrupt at
most (1−α) fraction of the stakes owned by the parties at any time. When a party is corrupted,
it means that the current state of the party is shared with the adversary. We consider another
type of corruption that we call weak corruption to cover the denial of service attacks (DDOS)
which is a critical attack in a distributed system. Z can weakly corrupt at most αw-fraction of
the honest stakes within a limited period ∆weak-slots. A weakly corrupted honest party cannot
send or receive any message during this period. We give the details related to weakly corruption
in our communication functionality Fcom in Figure 1. Remark that if the leader of a slot is
known, Z can weakly corrupt all honest leaders during their slots. This shows the importance
of the secrecy of the leaders in our model. Z can update the honest stakes during the execution
under the constraint that DS [Pi] ≤ ρmax for all P. The reason for this constraint is to obtain
a distributed system where honest parties are almost equal according to the Z’s view. Imagine
the scenario for an election protocol where there is only one honest party with the stake ratio
α. In this case, even if the leader election algorithm does not leak the identity of the leader, Z
always knows the leader.

Communication Model: We define the functionality Fcom that covers our communication
model is in Figure 1. In Fcom, Z can weakly corrupt within ∆weak-slots. After the weak corruption
period, the party receives all missed messages during the weakly corruption period, but it is not
guaranteed that the messages that she sent during this period are delivered. If a party is not
weakly corrupted, its message arrives to other parties within ∆-slots.

We alternatively give a ‘secure diffuse’ option in Fcom. If Fcom has this option, we call it
Fscom. It is useful if a sender wants to hide the message and the receiver. A sender gives the
message and the receiver’s name to Fscom and then Fscom sends the message to the receiver and
sends some junk messages to others. Fscom does not leak neither the message nor the receiver to
A.

We note that there exist models to capture diffuse functionality [18,2,26] with a bounded
delay. However, we consider a different security model where Z delays messages within a bound
and also corrupts weakly a limited number of parties which can cause delay some messages
much longer than the network delay bound ∆. In our model, we let Z weakly corrupt at most
αw-fraction of stakes at the same time.

7

Fcom creates an inbox Ii, two queue lists Q∆i and QWi for each instance Pi = (pidi, sid) ∈ P. Ii consists of

tuples of sender and message, Q∆i consists of tuples of sender, message and delay of the message and QWi
consists of tuples of sender, message and weakly corruption period of the sender. Fcom holds the list of weakly
corrupted parties in the list W of the session sid.

Weak Corruption. upon receiving (weakly corrupt,Pi) from Sim, add (Pi,Wi) to the list W and remove Pi
from P. Otherwise, ignore the request.

Diffuse by Honest Party. upon receiving a message (diffuse, sid,m) from an honest party PS , set D = 0 and

add (PS ,m,D) to Q∆i of all Pi ∈ P and add (PS ,m) to QWi for all (Pi, .) ∈ W. Send (PS ,m) to Sim.
Diffuse by Weakly Corrupted Party. upon receiving a message (diffuse, sid,m) from a weakly corrupted

party (PS , .) ∈ W, send (PS ,m) to Sim.
Diffuse by the Adversary. upon receiving a message (diffuse, sid,m,PS) from Sim where PS is not an honest

party, send (deliver, sid,m,PS) to all Pi ∈ P.

[Secure Diffuse by Honest Party.] upon receiving a message (secure diffuse, sid,m,Pj) from an honest
party PS , set D = 0,

– add (PS ,m,D) to Q∆j if Pj /∈ W,

– add (PS ,m) to QWj if Pj ∈ W,

– add (PS , φi ←$ {0, 1}|m|, D) to Q∆i for all Pi ∈ P \ {Pj}
– add (PS , φi ←$ {0, 1}|m|) to QWi for all (Pi, .) ∈ W \ {Pj}.

Finally, send (PS ,Pi, |m|) to Sim.

Fetch Message. upon receiving (fetch, sid) from a party Pi, do the following:

– if (Pi, .) ∈ W, obtain (Pi,Wi) from W and increment Wi. If Wi > ∆weak or if Sim replies with the

message (no, sid,Ps) as an answer to the message (is still weak, sid,Ps), add all (Ps,m) ∈ QWi to Ii,
empty QWi , remove (Pi,Wi) from W, and Pi to P. Then, send (deliver, sid, Ii) to Pi and empty Ii.
Otherwise, ignore the request.

– for each element (PS ,mj , Dj) in Q∆i , increment Dj . If Dj = ∆, add (PS ,mj) to the inbox Ii and

remove (PS ,mj , Dj) fromQ∆i . Otherwise, send (delayed messaged, sid,Q∆i) to Sim. In response, receive

(delay, sid,M) whereM⊆ Q∆i is the list of delayed messages. Then, for every (PS ,mj , Dj) ∈ Q∆i \M,

add (PS ,mj) to Ii and remove (PS ,mj , Dj) from Q∆i . In the end, send (deliver, sid, Ii) to Pi and
empty Ii.

Release Weak Corruption. upon receiving (weak release, sid,Pi) from Sim, remove (Pi, .) from W and add

Pi to P. Then, add all (PS ,m) ∈ QWi as (PS ,m,∆− 1) to Q∆i .

Fig. 1. Functionality Fcom without secure diffusion (the framed text) and Fs
com with secure diffusion.

3.2 Security of Single Leader Election

In this section, we define our security model for single leader election (SLE). SLE is a protocol
which selects one party as a leader with respect to a defined distribution among the parties
that joined the election. If the election is secret [5], no one knows who is elected until the
leader reveals himself. Boneh et al. [5] defined a single secret leader election (SSLE) protocol
formally with the security properties uniqueness, unpredictability, fairness and robustness in
the standard model. In a nutshell, uniqueness guarantees that exactly one party is elected for
each election, unpredictability guarantees that the adversary can find out who is elected with
the probability negligibly more than the random guessing, fairness guarantees that each party
has a equal chance to be elected and finally, robustness guarantees that even if some malicious
parties abort the election, one party is still selected.

8

We define the single leader election (SLE) protocol in the UC model with the functionality
Fsle in Figure 2. Fsle gives the uniqueness property. However, its unpredictability and fairness
properties depend on the definition of the algorithm Elect run by Fsle. In this way, we aim to
cover different types of SLE protocols with different security properties. Fsle defined over a fix
set of parties with parameters `min ∈ N minimum number of elections, max-elect ∈ N maximum
number of rejection by Sim and DS probability distribution defining the probability that a party
P ∈ P is elected as leader in an election i.e., DS [Pi] = ρi. It works as follows:
Leader Election: In this phase, Fsle provides some candidate-elections to Sim up to max-elect-
times and Sim decides one of them. This phase starts just after Fsle receives a message for the
election from all honest parties. Fsle runs an algorithm Elect which outputs three lists in order
of leadership: Leads, Leak and Clue of size `. The list Leads stores the leaders of `-elections i.e.,
Leads[k] = Pi where 1 ≤ k ≤ ` is the kth leader. The list Leak stores an honest leader or ⊥
meaning no information available i.e., if Leads[k] = Pi is an honest party, Leak[k] is either Pi
or ⊥. Otherwise, Leak[k] =⊥. The list Clues stores some clues about the honest leaders. i.e., if
Leads[k] = Pi is an honest party, Clues[k] is some clue. Otherwise, Clues[k] =⊥. The definition
of clue depends on the definition of the algorithm Elect. For example, the clue can be the
number of times that an honest party is a leader within `-elections. We define clue in Section
4.2 as positive integers. One can determine some slots that the party Pi is not a leader with
them. After running Elect, Fsle gives the list Leadsm which is generated by removing all honest
parties in Leads and an index set Im such that |Im| = |Leadsm| and Leadsm[i] = Leads[i] for
all i ∈ Im. If Sim does not agree, Fsle reruns Elect and repeats the same process till Sim agrees.
This process repeats at most max-elect-times. If Sim agrees with one of the elections or Fsle

runs Elect max-elect-times, Fsle continues to the next phase.
Distribution: If Sim does not agree on any elections after max-elect-rerun, Fsle considers the
last run of Elect is the election results. Otherwise, Fsle considers the one selected by Sim as
the election results. After setting up the election results, Fsle gives the list Leak, Clue and the
list Leadsm, Im to Sim. As a response, Sim sends a set Labort ⊂ Im meaning that Sim aborts the
leadership in each index in Labort. If |Leads| − |Labort| < `min, Fsle aborts because it does not
succeed to obtain at least `min leaders. Otherwise, it removes each party Leads[i] from Leads

for all i ∈ Labort. In the end, it sends the election results to the corresponding parties.
Reveal: When P wants to reveal its leadership for the ith election, it informs to Fsle. Fsle sends
a message to other parties saying P is the leader in election i.
Corrupt: When Sim corrupts a party, Fsle adds it to a list of corrupted parties.

We define next the security properties of Fsle.

Definition 4 (Fairness). We call that Fsle satisfies fairness if for all Pi ∈ P,

Pr[Leads[k] = Pi|k ∈ [1, |Leads|]] = DS [Pi]∑
Pj∈Ph

DS [Pj]
in the leader election phase.

In short, fairness guarantees that the distribution of leadership follows the distribution of
the stakes of the parties.

Definition 5 (Θ-Unpredictability). We define a list Reveal where |Reveal| = |Leads| and
Reveal[k] = Leads[k] if Leads[k] revealed its leadership at the election k.

If for all k ∈ [1, |Leads|] where Leak[k] =⊥ and Reveal[k] =⊥,
Pr[Leads[k] = Pi|Leak, Clue, Reveal] ≤ Θ, we call that the kth election is Θ-unpredictable in
Fsle.

Θ-predictability indicates that the probability of successful leader-guess in one election can-
not be greater than Θ if the election is not leaked or revealed. The perfect unpredictability level

9

Fsle is defined with parameters `min, max-elect ∈ N, the distribution DS , and the algorithm Elect for the
parties in set P = {Pi = (pidi, sid)}. PSim ⊆ P is the set of malicious parties.

Leader Election. upon receiving a message (elect, sid) from all honest parties in P, run the algorithm
Elect(DS , param, λ) → Leads, Clue, Leak. Then send (candidate-election, sid, Leadsm, Im) to Sim. Set
counter = 1, set the candidate-election list C = ∅ and add (Leak, Clue, Leads) to C. Then create a list
history[Pi] for each Pi and add (counter, {k : Leads[k] = Pi,Pi ∈ P}) to history[Pi].

– Upon receiving the message (reelect, sid) from Sim, if counter < max-elect, run Elect(DS , param, λ)→
Leads, Clue, Leak and set the election results Leak, Clue, Leads. Then send the message
(candidate-election, sid, Leadsm, Im) to Sim, set counter = counter + 1 and add (Leak, Clue, Leads) to
C. Add (counter, {sl : Leads[sl] = Pi,Pi ∈ P} to history[Pi]). Otherwise, move to the next phase.

– Upon receiving the message (set election, sid, c) from Sim where c ≤ counter, set the election result
Leak, Clue, Leads generated for counter = c. Move to the next phase.

– If Sim does not respond, move to the next phase.
Distribution. Send (initial-election, sid, Leak, Clues, Leadsm, Im) to Sim and receive (aborted, sid,Labort) from

Sim where Labort ⊆ Im. If |Leads| − |Labort| ≤ `min, abort. Otherwise, for all k ∈ Labort, remove Leads[k]
from Leads. Send the message (result, sid, {k : Leads[k] = Pi,Pi ∈ P}) to each Pi.

Reveal. upon receiving a message (reveal, sid,Pi, k) from an honest party Pi, if Leads[k] = Pi and distribution
phase is completed, send (reveal, sid,Pi, k) to all P ∈ P.

Corrupt. upon receiving a message (corrupt, sid, pidi), add Pi to PSim. Send
(corrupted, sid, pidi, {k : Leads[k] = Pi,Pi ∈ P}, history[Pi]) to Sim.

Fig. 2. Functionality Fsle.

is ρmax meaning that the lists of Leak and Clue do not help for guessing so the best guess is the
honest party that has the highest stake.

Definition 6 (Robustness). The leader election mechanism of Fsle is robust if Fsle runs at
least `min-elections with an overwhelming probability.

As a result of this, Fsle satisfies uniqueness if Fsle is robust. Uniqueness means that Fsle

selects only one party for each election.
We remark that Fsle provides uniqueness and robustness as it is defined in Boneh et al.’s

security model. Unpredictability and fairness depend on the algorithm Elect. One can define
it with respect to the desired security level.

Definition 7 (Secure SLE Protocol). A SLE protocol in the real world is secure if it realizes
Fsle defined in Figure 2.

4 Semi-Anonymous Single Leader Election

We describe our semi-anonymous single leader election protocol SASLE. Then, we show that
SASLE realizes Fsle with Algorithm 2. We first give an overview about primitives on which
SASLE is based.

Overview of SASLE: We assume that each party has individual probability of a being a slot
leader ρ. When parties start to run SASLE, they first generate a random number together.
They use this randomness to generate max attempts-many tickets which include independent
random numbers. Then they decide whether their ticket is winning according to their threshold
defined with respect to ρ. After the decision, each party semi-anonymously outputs the winning
tickets. In the end, all parties agree on all winning tickets and sort them in a descending order
by looking at their randomness. The sorted winning tickets show that the party who generated

10

the ticket at the kth order is the leader of the kth election. This is the main idea behind SASLE
but of course there are a few challenges in the protocol to keep the leaders secret until the leader
reveals.

The first challenge is that tickets should be verifiable i.e., the ticket is generated with the
agreed random number and the key of the party. Basically, this property can be satisfied by
a verifiable random function (VRF) but it does not hide the ticket owner because verification
requires the key of the ticket owner. Therefore, we need a ring VRF to generate tickets which
shows that the ticket is generated with the random number and with one of the keys of the
parties.

The second challenge is publishing the tickets. If a party publishes them itself, the ticket
cannot be anonymous. So, it does not work. One solution could be using an anonymous broadcast
channel so that the sender of the ticket cannot be followed but it is expensive to deploy. Therefore,
we prefer to publish them semi-anonymously meaning that each party sends each ticket to a
randomly selected another party that we call repeater by hiding the message and the repeater.
Then, the repeater publishes it. Basically, if the repeater is malicious, the anonymity of the
ticket is compromised. Otherwise, it is safe because the owner of the ticket is known by the
honest repeater only. We note that the message and the repeater can be hidden if the sender
encrypts the message with the key of the repeater and sends the ciphertext to all parties. The
party who can decrypt it understands that he is the repeater.

The last challenge is the agreement on all winning tickets. For this, we build SASLE on
top of a SMR which provides persistence and liveness. We note that existing SSLE protocols
[5,14,19,15] require to agree on shuffle messages to obtain the same election result but they do
not explain how to achieve it.

4.1 The Description of SASLE

SASLE works in the hybrid model Fsrvrf,Fscom and Frand on top of a state machine replication.

Each party registers to Fsrvrf and obtains pkrvrf before the election starts. We assume that each
party learns the ring VRF public keys of other parties that join to the protocol. We let PK =
{pkrvrf

i }ni=1 where n is the number of parties joining to the elections. SASLE consists of five
phases.

Randomness Generation Phase: SASLE requires a randomness beacon to satisfy fairness (See
Definition 4). The randomness beacon generates a verifiable random number r for the election
which will be used in the next phases of the protocol. There are many such beacons in the
literature based on publicly verifiable secret sharing scheme [28,13,31], verifiable delay functions
[4] and verifiable random functions [18,2,16]. However, we describe this phase based on the
randomness beacon of Ouroboros Praos [18] because of its efficient instantiation on a blockchain.
It does not provide a perfectly uniform random number but it is still good enough to satisfy
fairness. We describe the functionality Frand that provides such randomness beacon in Figure
3. Frand is simplified version of FRLB given in [18]. It allows the adversary max-reset-times to
reset the randomness.

During this phase, each party Pi sends the message (rand request, sid, e) and receives the
randomness re generated for the epoch e. Then, they start the next phase. We note that e is a
time label for which we select leaders with SASLE.

Preparation Phase: Each party Pi individually runs this phase to prepare their tickets to be used
for the election. We have two parameters in this phase: The first one is max attempts ∈ N which

11

The functionality Frand is parametrized with the number of allowed resets max-reset, the epoch e that is the
period for which the randomness is generated.

[Epoch-Randomness Generation.] Sample re from {0, 1}λ and send the message (rand leak, sid, e, re) to
Sim. Set the counter = 0 and the candidate set C = ∅.

– Upon receiving the message (rand reset, sid, e), sample another randomness re ←$ {0, 1}λ if counter <
max-reset. Send the message (rand leak, sid, e, re) to Sim. Set the counter = counter+1 and the candidate
set C = C ∪ {re}.

– Upon receiving the message (rand set, sid, e, r) from Sim, set re = r if r ∈ C.
– If no message is received from Sim, set the last element of C as the randomness re and continue to

the next phase.
[Epoch-Randomness Request.] Upon receiving (rand request, sid, e) from a party Pi, send the message

(epoch rand, sid, e, re) to Pi if the randomness is set.

Fig. 3. Functionality Frand for the randomness beacon.

is the total number of tickets that a party should generate and the second one is a threshold
c ∈ (0, 1].

Execution of this phase changes depending on the distribution DS . If each party has equal
chance of winning i.e., ρi = ρj = 1

|P| for all Pi,Pj ∈ P, parties run this phase with Frvrf.

Otherwise, they run Fsrvrf which provides a way to obtain a secret and random output with
respect to a relation R [7].

Each Pi first generates number of max attempts ring VRF outputs with their signatures. For
this, Pi sends the message (sign, sid,PK, pkrvrf , re||j||e, assj) to Fsrvrf (resp. Frvrf if equal winning-
case) for each j ∈ [1, max attempts] and receives back (signature, sid,PK,Wij , re||j||e, yij , σij).
Thus, Pi obtains an anonymous key Wij , a random number {yij} and their corresponding ring
signature σij . Here, the associated data assj can be ⊥ but it can be defined meaningful according
to the actual protocol that deploys SASLE (See Section 5.2). Therefore, it is not a parameter
that is a necessary for security of SASLE.

– [equal winning probabilities]: If yij ≤ τi = cρi
max{ρj}nj=1

= c, it means that the input

re||j||e passes the threshold so j is a winner. After comparing all random outputs with the
threshold, Pi prepares a winning ticket (re, j, e,Wij , σij , assj) and adds it to a list Li if j is
the winner. Otherwise, it adds (re,⊥,⊥,⊥,⊥,⊥) to Li just for the sake of the anonymity
i.e, to hide the number of winning tickets from the adversary.

– [different winning probabilities]: In this case, Pi needs to generate another random
value to determine whether the input re||j||e passes the threshold τi = cρi

max{ρj}nj=1
. So, it

sends (secret rand, sid,PK, pkrvrf
i ,Wij , re||j||e) to Fsrvrf for the relation R defined in 1 for

each j ∈ [1, max attempts]. If it obtains the secret output ηij and its proof πij from Fsrvrf
as a response, it means that the secret output of re||j||e passes the threshold τi and the
corresponding index j is a winner.

R = {((re||j||e, yij ,PK,D), (ηij , pkrvrf
i)) : secrets[Wij , re||j||e] = ηij ,

ρi ← D[pkrvrf
i], ηij <

cρi

max{{ρj}nj=1}
} (1)

In the end, Pi adds the winning ticket (re, j, e,Wij , σij , πij , assj) to a list Li if yij is the
winner. Otherwise, it adds (re,⊥,⊥,⊥,⊥,⊥,⊥) just for anonymity.
We remind that the secret output is necessary in the case of having different winning prob-
abilities in D because we need to show that a ticket is the winner without revealing the

12

threshold. If parties run this phase as in the equal-winning-probabilities case, we would not
satisfy the anonymity of the ticket because the adversary could link the identity of a party
with his threshold.

We remark that the number of random outputs that Pi obtain from Frvrf is exactly max attempts

for the messages re||j||e where j ∈ [1, max attempts] and for the ring PK. This property comes
from the uniqueness property of ring VRF.
Distribution Phase: In this phase, each party distributes the elements in their lists Li to randomly
selected other parties that we call repeater. In this way, we aim to hide the owner of each winning
ticket by trusting the repeater who is going to publish it later. Pi selects a repeater P` randomly
for each element m (either winner or not winner) in Li. Then, it sends each m to its repeater
P` via Fscom by sending the message (secure diffuse, sid,m,P`) to Fscom. Remember that Fscom

sends m to P` and also sends some junk messages to other parties. This is required to hide the
repeater of Pi for the sake of unpredictability. In addition, the reason that Pi sends all elements
in Li either winner or not winner to a repeater is to hide the number of winning tickets.

Whenever a party P` receives a (re, j, e,Wij , σij , πij , assj) where j,Wij , σij , πij 6=⊥ (resp.
(re, j, e,Wij , σij , assj) where j,Wij , σij 6=⊥ if equal stake) from a party Pi, it runs the algorithm
VerifyPreparation which does the followings:

– checks whether re is the randomness generated for e via Frand,
– checks whether j < max attempts,
– sends the message (verify, sid,PK,Wij , re||j||e, assj , σij) to Fsrvrf (resp. to Frvrf if

equal-winning case) for the verification for message and verifies if it receives
(verified, sid,PK,Wij , re||j||e, σij , yij , 1) from Fsrvrf (resp. Frvrf),

– sends the message (secret verify, sid,PK,Wij , re||j||e, πij) to Fsrvrf to check yij is a winning
ticket and verifies if it receives (secret verified, sid,PK,Wij , re||j||e, πij , 1) (resp. checks if
yij < c if equal-winning case).

If all checks and verifications are successful, then it stores (re, j, e,Wij , σij , πi,j , assj) (resp.
(re, j, e,Wij , σij , assj) if equal stake) in its submission list for the epoch e.
Submission Phase: This phase ends in ∆sub-slots. Whenever a repeater receives a valid ticket
(reinit , j, e,Wij , σij , πij , assj) (resp. (reinit , j, e,Wij , σij , assj) if equal winning case), it sends it as
a command to all state machines (See Algorithm 1) via Fcom. The algorithm Transition of
SMR works as follows given the input (LOG, (reinit , j, e,Wij , σij , πij), assj) where LOG is a set: It
runs VerifyPreparation with the input (reinit , j, e,Wij , σij , πij , assj) and if it verifies, it adds
(reinit , j, e,Wij , σij , πij , assj) to LOG. Otherwise it ignores.

If a party sees that a repeater does not distribute its tickets at latest ∆sub −∆weak −∆ slots
after the randomness phase, the party publishes them itself as it is the repeater even if it leaks
the ownership. We remark that if a ticket is not published on time by its repeater, it means
that the repeater is malicious. So, leaking the owner of the ticket is not a new information to
the adversary.
Sortition Phase: After the submission phase, all parties wait∆live-slots to make sure that all elec-
tion tickets of e are the finalized by the state machines. After tickets (reinit , j, e,Wij , σij , πij , assj)
(resp., (reinit , j, e,Wij , σij , assj) if equal winning case) are marked as final by the state machines
of parties, they sort the tickets with respect to sorting their yij values in a descending order. We
denote the list of sorted tickets by Leader i.e., Leader[u] = (reinit , j, e,Wij , σij , πij , assj) (resp.
(reinit , j, e,Wij , σij , assj) if equal winning case) shows that the party with an anonymous key Wij

generated the ring signature σij is the leader of the uth election.

13

Underlying security of the state machine replication (liveness) guarantees that all parties
have the same leaders array. Thanks to the anonymity provided by the ring VRF, they do not
know who generated the tickets of slots except with the ones of which they were the repeater.
Thanks to the zero-knowledge property given by Fsrvrf, they do not learn any information about
the threshold of the owner of the tickets as well.

If the repeater is malicious, the anonymity of a ticket is clearly compromised however as long
as the malicious repeaters are bounded, we still achieve good unpredictibility level as we see in
the security analysis.
Verification: Whenever a slot leader with the key pkrvrf

i wants to announce
its leadership of kth election, it contacts with Fsrvrf (resp. Frvrf if equal stake)

by sending (sign, sid, {pkrvrf
i },Wij , re||j||e, assj) and obtains a signature σ̂ij .

When a party receives (σ̂ij , pkrvrf) from a leader of kth election, it obtains
(reinit , j, e,Wij , σij , πij , assj) (resp. (reinit , j, e,Wij , σij , assj)) from Leader[k] and sends the

message (verify, sid, {pkrvrf
i },Wij , re||i||e, assj , σ̂ij) and (verify, sid,PK,Wij , re||i||e, assj , σij) to

Fsrvrf (Frvrf if equal stake). If Frvrf outputs (1, y) and (1, y′) where y = y′ = yij , then the party

verifies that σij ,Wij , yij are generated by pkrvrf so he is the leader.

4.2 Security Analysis of SASLE

We show that SASLE realizes the functionality Fsle running the algorithm Elect (See Algorithm
2). We first analyse the fairness, unpredictability, robustness and uniqueness of Fsle running the
algorithm Elect (See Algorithm 2). Then we show that SASLE realizes Fsle (See Definition 1).

Fsle with Algorithm 2 The parameters of Fsle is DS , max attempts ∈ N, c ∈ (0, 1], security
parameter λ, the number of registered parties n, max-elect = max-reset (defined in Frand in
Figure 2), `min = eplen.

Given inputs DS , `max, param = (max attempts, c, λ), Elect first finds the ratio of malicious
parties with respect to DS (Line 1 in Algorithm 2). In Elect, each party Pi has a threshold

value τi = c DS [Pi]
max {DS [Pj]nj=1}

= cDS [Pi]
ρmax

. We note that τi proportional to the probability of being

elected for a slot ρi = DS [Pi]. Elect selects number of max attempts random elements for
each party and checks whether it is less than the threshold. If it is less than their threshold, the
random value is added to a list Li created for each party Pi. Beyond the random value, Elect
also adds the corresponding attempt index of the random value to Li (See Line 5-8 in Algorithm
2). After the creation of all lists, it shuffles randomly the union of lists which is L and obtains
election results. If ith-election (L[i]) is assigned to an honest party, Elect decides whether
leaking or not leaking the honest leader to the adversary by tossing a coin with probability
(1−α) i.e., the coin outputs 1 with the probability 1−α. If the leader of ith-election is decided
to be leaked, it adds the leader to the list Leak[i] (See Line 14-17 in Algorithm 2). In any case,
it adds the attempt-index value in L to the list Clue. In the end, Elect outputs a list Leads

including the leaders of slots, a list Leak including the some honest slot leaders to be leaked
(i.e., deanonymized) and a list Clue which includes indexes in {1, 2, . . . , max attempts}.

Fairness: It is clear that Elect satisfies fairness because Pr[Leads[k] = Pi|k ∈ [1, |Leads|]] = ρ.

Θ-Unpredictability: Unpredictability is not as straightforward as fairness. The leaked slots are
clearly predictable while other slots give maximum amount of unpredictability level (i.e., ρi

α

14

Algorithm 2 Elect(DS , max attempts, c, λ)

1: 1− α =
∑n

Pi∈Pm
DS [Pi]

2: for Pi ∈ P do

3: τi ←
cDS [Pi]

max {DS [Pj]
n
j=1
}

4: Li ← ∅
5: for k ∈ [1, max attempts] do

6: ωk ←$ {0, 1}λ
7: if ωk < τi then
8: add (Pi, k) to Li
9: L ← Shuffle(∪ni=1Li)

10: for k ∈ {1, 2, . . . , |L|} do
11: retrieve (Pi, k) from L[k]
12: Leads[k]← Pi
13: Clue[k]← k
14: if Pi ∈ Ph then
15: b←1−α {0, 1}
16: if b = 1 then
17: Leak[k]← Pi
18: else: Leak[k]←⊥

return Leads, Clue, Leak

for all Pi ∈ PH) till some parties reveal their leadership. After reveals, the list Clue may give
information to the adversary about who is not the leader in other elections. For example, if
a party is selected for ith-election and k = Clue[sl] and reveals its leadership, it implies that
this party is not the leader of elections with the attempt-index k. The bigger max attempts

and smaller parameter c makes the values in Clue less useful for the adversary which wants to
predict the leaders. We have a detailed analysis below.

Lemma 1. For any 1 ≥ χ > c, any non-leaked and non-revealed election s of an honest leader
Pi, the probability that Pi is the leader of sth election given Leak, Clue, Leadsm, Im, and revealed
elections Reveal is at most ρi

α(1−χ) except with the probability max attempts exp(−αχ(ln(χ/c)−
1)/ρmax).

Proof. Let E be the event we are conditioning on, that the revealed leaderships are what they are.
For an index k, let Sk be the set of honest parties who revealed and do not have a leadership
with index k i.e., Pj ∈ Sk if Leads[s′] = Reveal[s′] = Pj ∈ PH , Clue[s′] 6= k and s′ 6= s
where PH is the set of honest parties.. Given Leak[s] =⊥, Leads[s] ∈ PH and Clue[s] = k,
Pr[Leads[s] = Pi|E] = 0 if Pi /∈ Sk and Pr[Leads[s] = Pi|E] = ρi∑

j∈Sk
ρj

if Pi ∈ Sk. We thus

need to lower bound
∑
j∈Sk ρj .

Let Nk be the set of i for honest parties Pi that have ωk > τi. These honest parties never
reveals their leadership with index k and so Nk ⊂ Sk. We show that except with probability

exp(−αχ(ln(χ/c)−1)
ρmax

) (not conditioned on E), for all indices k, we have
∑

Pi∈Nk ρi ≥ αχ. From

this, it follows that Pr[Leads[s] = Pi|E] = ρi∑
Pj∈Sk

ρj
≤ ρi∑

Pj∈Nk
ρj
≤ ρi

α(1−χ) as required.

We define a Bernoulli random variable Xi,k which is 1 if ωk < τi. So we have
∑

Pi∈Nk ρi =∑
Pi∈PH ρi(1 − Xi,k) = α −

∑
Pi∈PH ρiXi,k. Xi,k is 1 with probability cρi

ρmax
. Thus the expec-

tation is this weighted sum, which we call µ, is µ = E[
∑

Pi∈PH ρiXi,k] =
∑

Pi∈PH
cρ2i
ρmax

. Note

that µ =
∑

Pi∈PH
cρ2i
ρmax

≤
∑

Pi∈PH cρi = αc. Note that also with our assumption χ > c, this
implies that µ < αχ. Now, we apply the Chernoff bound, in the form of Lemma 8 to obtain

Pr[
∑

Pi
ρiXi,k ≥ αχ] ≤ exp(−µ−αχ(ln(αχ/µ)−1)

ρmax
). Using µ ≤ αc we get Pr[

∑
Pi∈PH ρiXi,k ≥

αχ] ≤ exp(−µ−αχ(ln(αχ/µ)−1)
ρmax

) ≤ exp(−αχ(ln(αχ/µ)−1)
ρmax

) ≤ exp(−αχ(ln(χ/c)−1)
ρmax

).

When
∑

Pi∈PH ρiXi,k ≤ αχ, we have that
∑

Pi∈Sk ρi ≥
∑

Pi∈Nk ρi ≥ α(1 − χ). For a non-
malicious non-leaked slot sl of index k, the probability in the adversaries’ view that an honest
party Pi is the leader of sl is 0 if Pi /∈ Sk and ρi∑

Pj∈Sk
ρj
≤ ρi

α(1−χ) . For this property to hold

for all non-leaked and non-revealed honest leaders, we need
∑

Pi∈PH ρiXi,k ≤ αχ to hold for all

15

indices k. For any one index, it holds except with probability exp(−αχ(ln(χ/c)−1)
ρmax

). By a union

bound, it holds for all indices k with probability max attempts exp(−αχ(ln(χ/c)−1)
ρmax

).

Corollary 1. For any 1 ≥ χ > c, Fsle with Algorithm 2 is ρmax

α(1−χ) -unpredictable except with

probability max attempts exp(−αχ(ln(χ/c)−1)
ρmax

).

Corollary 1 shows that if 1 ≥ χ ≥ c, the list Clue is not very helpful to the adversary to
predict the slot leader.

Robustness: We show that Fsle outputs at least eplen election results except with a negligible
probability. Remark that it happens only if |Leads| − |Labort| ≥ eplen.

Lemma 2. Fsle with Elect described in Algorithm 2 is robust except with the probability

exp(− (r−1)2

2r eplen) where r = cmax attemptsα
ρmaxeplen

as long as r > 1.

Proof. We need to upper bound | ∪Pi∈PH Li| = |{ωi,k < τi} : Pi ∈ PH |. Let’s define a random
variable Xi,k to for Pi ∈ Ph and 1 ≤ k ≤ max attempts. Xi,k is 1 if ωi,k < τi. So, Pr[Xi,k = 1] =
Pr[ωk < τi] = cρi

ρmax
. The expected value of

∑
i,kXi,k = µ = αcmax attempts

ρmax
. From Chernoff bound,

for all δ ∈ (0, 1), Pr
[
| ∪Pi∈PH Li| =

∑
i,kXi,k ≤ (1− δ)µ

]
≤ exp(− δ

2µ
2) for any δ ∈ (0, 1).

Therefore, | ∪Pi∈PH Li| > (1 − δ)µ except with the probability exp(− δ
2µ
2). Since µ = cρi

ρmax
=

replen for r > 1, we set δ = 1 − 1/r and obtain (1 − δ)µ = eplen. Thus we have | ∪Pi∈PH

Li| > eplen except with the probability exp(− δ
2µ
2) = exp(− (1−1/r)2

2 µ) = exp(− (r−1)2

2r2 µ) =

exp(− (r−1)2

2r eplen).

Uniqueness: Lemma 2 shows that Elect elects only one party for each election. Therefore, Fsle

with Elect satisfies uniqueness.

SASLE realizes Fsle with Algorithm 2

Theorem 1. Assuming that the underlying state machine replication has persistence and live-
ness with the parameter ∆live, SASLE realizes Fsle with the Algorithm 2 in the Fsrvrf,Frand and
Fscom-hybrid model.

Proof. We construct a simulator Sim in the Fscom,Frand,Fsrvrf-hybrid model. Fsle in the ideal
world runs the election for the parties P = {Pi = (sid, pidi)}ni=1. In the real world, Sim registers
the honest parties in P via Fsrvrf. Sim starts to simulate the real protocol as soon as all parties

register to Fsrvrf and agree on the ring VRF public keys PK = {pkrvrf}ni=1.
[Simulation of leader election:] When Fsle sends (candidate election, sid, Leadsm, Im), Sim
learns which malicious party is assigned to which slots for the first candidate election and
simulation starts.
[Simulation of the randomness phase:] Sim simulates Frand as described in Figure 3. When-
ever Sim sends the message (rand leak, sid, e, re) to the adversary while simulating Frand, it sets
up (secret) random outputs that are supposed to be generated by Fsrvrf with a given randomness
of the epoch so that the election result in the real-world gives a consistent result with Leadsm
as described below. Whenever Sim receives a message (rand reset, sid, e), it sends (reelect, sid)
to Fsle and receives new election results Leadsm from Fsle.

16

When the adversary sends the message (rand set, sid, e, kset), Sim finalizes the randomness
of e as re which is the randomness generated when counter = kset as Frand does. Then, Sim
sends the message (election set, sid, kset) to Fsle to finalize the election in the ideal world as well.
Then, it receives the message (initial election, sid, Leak, Clue, Leadsm) from Fsle.
[Setting up (secret) random outputs of Fsrvrf before rand leak:] Sim selects ran-
domly y1 < y2 < . . . < y`max

where `max = nmax attempts after Fsle sends
(candidate election, sid, Leadsm, Cluem). It stores y1, y2, . . . , y`max

to a history list logr[counter]
where counter is the current counter of Frand. This information will be useful when A corrupts
an honest party during the simulation. Next, Sim executes the step that we call the Malicious
rVRF evaluation preperation with the input re that it selected while simulating Frand that it
selected while simulating Frand:

[Malicious rVRF evaluation preperation:] Given re, Sim obtains re that it selected
while simulating Frand and creates a list OutA to later populate Out of Fsrvrf. Given the list IPi

of elections that a malicious party Pi is selected as a leader, Sim behaves as follows: Sim assigns
randomly a unique index between [1, max attempts] for each election in IPi . We note that it
is possible to assign a unique index in [1, max attempts] to each value in IPi because |IPi | ≤
max attempts as it can be seen in Lines 5-8 in Algorithm 2. Let’s denote the corresponding
list by JPi . For each i ≤ IPi , Sim gets j ← JPi , and sets OutA[re||j||e, pkrvrf

i] := ysl. If there
exists W such that anonymous key map[re||j||e,W] = pkrvrf

i , then Sim outputs an abort message
Abort-Collision and ends the simulation.
[Simulating Fsrvrf:] As soon as receiving (initial election, sid, Leak, Clue, Leadsm) from Fsle

, Fsrvrf does the following: For each k ≤ `max such that Leak[k] 6=⊥, Sim gets j ←
Clue[k], Pi ← Leak[k], then selects randomly W from SW as Fsrvrf does. Then, it sets

anonymous key map[re||j||e,W] := pkrvrf
i and Out[re||j||e,W] := yk where yk is obtained

from logr[kset]. It also samples randomly a secret random output η < τi and sets
secrets[re||j||e,W] := η. If Out[re||j||e,W] or secrets[re||j||e,W] has been already defined
with another value, Sim outputs an abort message Abort-Collision and ends the simulation.

For each k ≤ `max such that Leak[k] =⊥, Sim gets j ← Clue[k], then samples W ←$SW
and runs Gensign(PK,W, re||j||e). It stores [re||j||e,W,PK, σ, 1] since it is a valid signature.
It obtains a proof π ← Genπ(PK,W,m). Then, it sets Out[re||j||e,W,PK] := yk, adds π to
zkproofs[re||j||e,W] and records [re||j||e,W,PK, σ, 1] in Frvrf’s database. Since Fsrvrf does not
know the leader of the kth election, it does not know the threshold of the leader. Therefore, it
makes sure that there exists a valid proof even if it does not generate a secret random output for
it. Since secret random output is never revealed, this part of the simulation is indistinguishable.
It also stores W in W[k] and σ in signature[k]. If Out[re||j||e,W] has been already defined
with another value, Sim outputs an abort message Abort-Collision and ends the simulation.
Remark that Sim cannot set anonymous key map[re||j||e,W] and secrets at this point because
honest leader of kth election is not known yet.

Sim simulates honest ring VRF signature, secret random element proof and secret verification
as described in the functionality. Whenever Fsrvrf needs to randomly select an evaluation value

for (m, pkrvrf
i), it checks if OutA[m, pkrvrf

i] is defined before. If it is defined, it sets Out[m,W] =
OutA[m, pkrvrf

i]. It picks ηij ≤ τi and sets secrets[m,W] = ηij . Otherwise, it behaves as defined
Fsrvrf. Thus A has random outputs which corresponds to the election result.
[Simulation of the preparation phase:] Sim simulates the leaked slots as follows: We denote
the corresponding y-values of leaked slots of an honest party Pi by set Yi = {yi1 , yi2 , . . . , yit}
where Leak[ik] = Pi and ik ∈ {1, sl2, . . . , sl`} for all k ∈ [1, t]. For each Pi ∈ Ph, Sim obtains σik
and its anonymous key Wik by sending the message (sign, sid,PK, pkrvrf

i , re||j||e) to Fsrvrf where

17

j ← Clue[ik]. Similarly, it obtains πik by sending the message (secret rand, sid,PK,Wik , re||j||e)
to Fsrvrf where j ← Clue[ik]. Remark that Sim already made sure that secrets[re||j||e,Wik] < τi
in Fsrvrf for the leaked slots so πik is not ⊥. In the end, Sim constructs a list Li for each honest
party Pi such that Li = {(re, j, e,Wik , σik , πik)} similar to the preparation phase of SASLE.
Remark that Li includes only the leaked tickets differently than SASLE but it is indistinguishable
because A does not learn the non-leaked tickets at this phase.

Sim also prepares a list of tickets for the non-leaked slots. It creates a special list L∗ which
represents the union of subsets of Li in SASLE which includes tickets that are not sent to
A. For each sl ≤ `max such that Leak[k] =⊥, it gets W = W[k], σ = signature[k] and π =
zkproofs[m,W]. In the end, it adds the ticket (re, j, e,W, σ, π) to L∗ where j = Clue[k].
[Simulation of the distribution phase:] Here, Sim only knows the owner of an honest party’s
y value if its slot is leaked. However, it is not a problem because the honest leaders of a non-leaked
slots cannot be known by the adversary. Sim distributes the leaked slots among the malicious
parties. In more detail, Sim does the following for each honest Pi: For each element in Li, it
picks randomly a malicious party Pj and sends the element to Pj via Fscom. Remark that an
honest party sends a message using Fscom in the distribution phase max attempts-times. In order
to simulate this, Sim sends some random messages from {0, 1}|m| max attempts− |Li|-times to
each party as if it comes from Fscom.
[Simulation of the submission phase:] During the submission, Sim behaves exactly the same
as an honest party in SASLE. Sim submits the tickets together with their signatures and proofs
on behalf of the honest party who receives them from a malicious party. For each anonymous
ticket in L∗, Sim picks randomly an honest party and submits the ticket on behalf of this honest
party.

In the end of the sortition phase, if there exits an honest ticket which is not finalized, Sim
outputs the message Abort-Missing and the simulation ends. Otherwise, Sim checks which
malicious tickets are not in LOG of SMR in order to find aborted slots. If ysl is not obtained
from the verification of one of the malicious ring signatures in LOG and Leadsm[k] = Pi ∈ Pm,
Sim adds k to the aborted slot list Sabort. It sends (aborted slots, sid,Sabort) to Fsle. After Sim
sends the aborted slots to Fsle, if the sortition of tickets changes in LOG and is finalized, then
Sim outputs Abort-Inconsistency and the simulation ends.
[Simulation of revealing:] When Fsle sends (reveal, sid, k,Pi), Sim sends
(sign, sid, {pkrvrf

i },W, re||j||e) to Fsrvrf where j ← Clue[k] and re||j||e is from the kth sorted
ticket. Then it obtains σ̂. Then, it publishes it via Fscom

[Simulation of Corruption:] When Sim receives a message (corrupted, sid, pidi, history[Pi]),
Sim adjusts the ring VRF outputs so that the election result and the candidate elections match
with the real world election. Remember that history[Pi] consists of the tuples (counter, {j :
Slot[j] = Pi}) i.e., the slots that Pi is selected as a leader in the election number counter. For
each election number counter ∈ history[Pi], Sim obtains logr[counter] that it stored during
the setting up (secret) random outputs, r = C[counter] and the list of slots IPi (i.e., the second
component of (counter, {j : Slot[j] = Pi}) in history[Pi]) that Pi is selected in counterth

reelection in Fsle. In the end, it executes the same steps in the malicious rVRF evaluation
preparation with the randomness r and IPi .

Claim. The view of Z in its interaction with Sim is indistinguishable from the view in its
interaction with the real-honest parties.

Proof. We first analyse the indistinguishability of simulation of functionalities. The simula-
tions of Frand,Fscom are the same. Sim only simulates differently Fsrvrf. It differently outputs

18

Abort-Collision when a given input (PK, re||j||e) is assigned to a value in Out and secrets

for a party Pi. Since re is learnt by the adversary after e is started and it is random, the
probability that any input such as (PK, re||j||e) is queried to Fsrvrf before e starts is negl(λ).

Next we analyse the indistinguishability of the simulation of honest parties. First difference
is that Li generated during the simulation does not include all winning tickets of Pi as in the real
protocol. It does not change the view of theA becauseA only learns the leaked tickets in Li in the
real protocol. Given that the number of leaked tickets are ξ, A also receives nhmax attempts−ξ-
junk messages from Fscom in the real protocol. Since Sim sends max attempts−|Li| junk messages
for each honest party Pi beyond the leaked tickets, the simulation of honest parties during the
distribution phase is indistinguishable. Second difference is in the sortition phase. If a y-value
is missing in the in the end of the sortition phase, Sim outputs Abort-Missing. Since sortition
period takes ∆live-slots, all honest tickets are going to be final in ∆live-slots. The other abort
message that Sim outputs during the sortition phase is Abort-Inconsistency. Since all honest
tickets are final in the end of ∆live-slots, they are considered as final for all honest parties and
cannot be changed.

Claim. The distributions of the outputs of Sim and A are indistinguishable.

Proof. The outputs of Elect in Algorithm 2 and the election process in SASLE are in the
same distribution. Therefore, the election results in both world matches as long as the Sim does
not output any abort message which happens with negligible probability as shown in the above
claim.

5 Sassafras

In this section, we describe our UC-secure proof-of-stake protocol Sassafras which uses SASLE
as a leader election protocol. For the sake of generality, we describe Sassafras in the Fsle which
can be replaced by SASLE as shown in Theorem 1. We show in Section 5.2 how to instantiate
Sassafras in the real-world.

Sassafras consists of sequential long time intervals epochs (e1, e2, . . . , eL) where ei ∈ N, each
of which consists a number of sequential block production slots (ei = {sl1, sl2, . . . , sleplen}) up to
eplen. In the beginning of an epoch, each slot of the epoch is assigned to one block producer
with Fsle executed before starting to the epoch. Each block producer produces a block when
they are in a slot that they are the leader.

Sassafras is run in a key evolving signature functionality Fsgke [18] to sign the blocks, Fcom

(See Figure 1) and Fsle (See Figure 2) hybrid model by some parties P1,P2, . . . ,Pn. Each party
(ITI) Pi is initiated with an input the session id sid and a stake value sti given by the Z and
starts running the protocol below. For the sake of simplification and not being wandered from
the main contribution, we simply assume that there exists a mechanism (e.g. as in [2]) which
helps the newly joining party to converge the current state of the protocol correctly.

Genesis Phase: Each Pi registers to Fsgke to obtain the verification key pkkesign
i for the key

evolving signature. Then, it gives to Finit with the message (register, sid, sti, pkkesign
i). When Finit is

instructed by the environment, it sends all registered parties the message (genesis, sid,b0) where
b0 is the genesis block. b0 includes the list of parties with their public keys and stake values who
registered and protocol parameters: i.e., b0 = ({Pi, pkkesign

i , sti}ni=1, max-elect, eplen) where n
is the number of parties registered to Finit before the genesis block, max-elect is the parameter

19

of Fsle and eplen is number of slots that one epoch has. We assume that genesis phase is epoch
0.

Election Phase: In this phase, parties run Fsle to be assigned as a leader for the slots of an
epoch e ≥ 1. Before starting the epoch, each party obtains the stake distribution DS of e from
the previous epoch e − 1. Then , they send a message (elect, sid||e) to Fsle with the parameter
(eplen, max-elect,DS) and receive the slot numbers that they are the leaders.

Block Production: Each Pi produces a block when they are in a slot that they are selected
as a slot leader. Each Pi keeps a local set of blockchains Ci = {C1, C2, ..., Ct}. All these chains
have some common blocks, at least the genesis block, up until some height. We assume that
each party has a local transaction bucket that contains the valid transactions to be added
into blocks. All transactions in a block is validated with a transaction validation function
ValidateTransaction which receives the transaction and a chain C ∈ Ci as an input and
outputs valid/invalid.

When Pi is a slot leader of a slot sl of an epoch e, it produces the block of this slot as follows:

– it obtains the best chain C that was generated by Algorithm 3 [18] and retrieves the hash
of the last block of C which is HC .

– retrieves a list of transactions T X from its transaction bucket.

In the end, Pi generates the block data data = (HC , T X , sl, e) and obtains the signature of the
data σsl by sending (sign update, sid, data, sl) to Fsgke. Then, Pi sends bsl = (data, σsl) to the
other parties via Fcom and sends message to Fsle to reveal its leadership for sl.

In any case (being a slot leader or not being a slot leader), when Pi receives a block bsl =
(data, σt) produced by any block producer Pt for a slot sl, it starts validating the block with the
algorithm ValidateBlock(bsl,Ci) which checks the validity of the followings:

– validity of the signature by sending the message (verify, sid, pkkesign
i , data, sl, σt) to Fsgke,

– check whether Fsle sends a message (reveal, sid,Pt, sl),

– validity of the block i.e., if there exists a chain C ∈ Ci with the header H(C) and Validate-
Transaction(C, T X) is valid.

If a block bsl passes all the validation steps, Pj appends bsl to C and adds updated C to C.
Otherwise, it ignores the block. In the end of the slot, Pj decides the best chain with the
algorithm MaxValid(C, Cbest) [18] (Algorithm 3) where Cbest is the best chain in the previous
run of the algorithm. MaxValid selects the longest chain which does not fork from the current
best chain more than k blocks.

Algorithm 3 MaxValid(C, Cbest) [18]

1: Cmax ← C[0] //obtain the first chain in C
2: for all Ccand ∈ C do
3: if |Ccand| > |Cmax| ∧ Cpkbest � Ccand then
4: Cmax ← Ccand
5: return Cmax

Update Phase: A party updates its stake by creating a transaction. The update will be valid
`update-epochs later than the transaction is added to the blockchain.

20

5.1 Security Analysis of Sassafras

Our security analysis follows the analysis by Bernardo et al. [18] because Sassafras follows the
same structure as Ouroboros Praos except for the leader election protocol and adversarial model.
One can imagine Sassafras as Ouroboros Praos where only one party is assigned to a slot and
a party can be weakly corrupted during its slot. We consider a party that is weakly corrupted
during its slot as malicious. Therefore, we need the probability that the adversary guesses the
leader of a slot during the slot.

We first analyse the security of Sassafras in an adversarial model that we call the no-abort
model. In this model, the adversary never aborts some slots during the distribution phase of Fsle

i.e., Labort = ∅ in the distribution phase. This is necessary to have the analysis of slots below.
If we were not in this adversarial model, we could not easily compute the probability of a slot
is not corrupted because the adversary influences it by aborting some of its slots. For example,
assume that sli and sli+2 are assigned to a malicious party and sli+1 is assigned to an honest
party in the end of election phase of Fsle. In this case, whether sli+1 is going to be assigned to an
honest party in the final election result depends on the adversary’s decision. If it aborts sli, then
sli+1 is going to be assigned to a malicious party. We note that aborting the slots does not give
any advantage to the adversary to break the security of chain properties of Sassafras as will be
seen at the end of the analysis. It is complicated to define certain probabilities for slots with the
adversary which can abort. One can imagine intuitively the aborted slots as empty slots where
there is not any block production. We know that they do not affect the security of a blockchain
as long as the probability of having a corrupted slot leader is less than half [18,27].
Analysis of slots: We distinguish slots as a public, malicious, weak and honest slots as defined
below. We use the fact that Fsle is θ-unpredictable and fair i.e., the probability that a slot is
assigned to an honest party is α for each run of Elect.
Public Slot: sl is a public slot if Leak[sl] 6=⊥. The probability of being a public slot is ppSlot =
α(1− α) = α− α2.
Malicious Slot: sl is malicious if its leader is malicious. The probability of being a malicious slot
is pmSlot = 1− α.
Weak Slot: sl is a weak slot if the honest leader of the slot is weakly corrupted during this
slot. If sl is a public slot then the adversary can weakly corrupt the honest leader during its
slot. If a slot is neither public nor malicious, the adversary can weakly corrupt at most αw-
fraction of honest parties during the slot by guessing and succeeds if one of the weakly corrupted
honest parties is the leader of the slot. Remember that each non-public and non-malicious slot
is θ-unpredictable thanks to Fsle. Therefore, the probability of having a weak slot is pwSlot =
ppSlot + θαwn(1− pmSlot − ppSlot).
Honest slot: sl is an honest slot if it is neither weak nor malicious slot. The probability of having
an honest slot is phSlot = 1− pmSlot − pwSlot.
Analysis of chain properties:We show the chain properties (defined below) of Sassafras in
one epoch if certain relations satisfied between pmSlot, pwSlot and phSlot assuming that Fsle satisfies
fairness with max-elect-reelection, Θ-unpredictability and robustness. The first property is the
common prefix (CP) property [20] defined below. The CP property makes sure that the honest
parties have a consensus on some blocks.

Definition 8 (Common Prefix (CP) Property [20]). Common prefix with the parameter
k ∈ N ensures that any chains Ci, Cj possessed by two honest parties at the onset of the slots
sli < slj satisfies the following except with a negligible probability in k: the prefix of Ci obtained
by removing the last k blocks is also the prefix of Cj.

21

Lemma 3 (CP). Assuming phSlot >
1
2 , Sassafras in the no-abort model satisfies the CP prop-

erty with the parameter k except with the probability max-elect exp(−Θ(k)).

Proof. If max-elect = 1, Kiayias et al. [27] shows if phSlot >
1
2 , the CP property is guaranteed

with except with the probability exp(−Θ(k)). So, Sassafras in the no-abort model satisfies the
CP property except with the probability max-elect exp(−Θ(k)).

The next property is existential chain quality (ECQ) [20] which guarantees existence of at least
one honest block in some length of a sub-chain.

Definition 9 (Existential Chain Quality (ECQ) Property [20]). The ECQ property with
parameter kecq ∈ N ensures that there exists at least one honest block in every kecq length portion
of a blockchain owned by an honest party except with a negligible probability in kecq.

Lemma 4 (ECQ). Assuming pmSlot < phSlot, A breaks the ECQ property in Sassafras in the
no-abort model with the parameter kecq ∈ N except with probability 1−max-elect exp(−Ω(kecq)).

Proof. The analysis is similar to ECQ analysis in [18]. Let’s consider consecutive kecq blocks
b1,b2, ...,bkecq of a chain C owned by an honest party and assume that all of them generated
by malicious parties. Imagine that the first honest block before b1 is bh1

∈ C and the first
honest block after bkecq is bh2 ∈ C. Remark that bh1 exists because it is the genesis block in the
worst case. Also, bh2 exists because it is owned by an honest party so in the worst case it is the
last block of C. We know that the difference between the length of the chain whose last block
is generated by the honest party and the length of the chain whose last block is generated by
the next honest party is at least one because honest parties always build on top of the longest
chain. Therefore, the length of the other chains that the honest parties build will be at least the
number of honest slots (h) between the slot of bh1 and bh2 . Since C is the honest party’s best
chain, it is longer than other chains meaning that kecq ≥ h. Since pmSlot < phSlot the probability
h < kecq falls exponentially with kecq [18].

We next define honest chain growth (HCG) which is weaker version of the chain growth (CG)
property we define later. The HCG and ECQ properties help us to prove the CG property.

Definition 10 (Honest Chain Growth (HCG) [2]). The HCG property with parameters
shcg ∈ N and κhcg ∈ (0, 1] ensures that the sub-chain C[slu + slv] of a blockchain C owned by
an honest party has the length at least shcgκhcg where slu and slv ≥ slu + shcg are assigned to
parties except with the negligible probability in shcg.

Lemma 5 (HCG). Assuming Fsle satisfies fairness in number of max-elect-reelection,
Θ-unpredictability, robustness, Sassafras in the no-abort model satisfies the honest chain
growth property with κhcg = phSlot(1 − δhSlot) in shcg slots except with the probability

max-elect exp(− shcgphSlotδ
2
hSlot

2) where 0 < δhSlot < 1.

Proof. Consider a chain C owned by an honest party at slot sl. Let slu and slv be two slots where
C[slu] and C[slv] are generated by honest parties and slu + shcg ≤ slv. As discussed in Lemma
4, the chain grows between C[slu] and C[slv] at least the number of honest slots. Therefore, let’s
define a random variable Si which is 1 if i is an honest slot and upper bound the probability of
sum of honest slots between slu and slv with the Chernoff bound for all 0 < δhSlot < 1.

Pr

[
honest slots =

slv∑
i=slu

Si ≤ shcgphSlot(1− δhSlot)

]
< exp(−shcgphSlotδ

2
hSlot

2
)

22

Chain growth (CG) property is stronger version of HCG as defined below:

Definition 11 (Chain Growth (CG) Property [20]). The CG property with parameters
scg ∈ N and κcg ∈ (0, 1] ensures that the sub-chain C[sli + slj] of a blockchain C owned by an
honest validator has the length at least scgκcg with sli and slj ≥ sli+scg except with the negligible
probability in scg.

Remark that HCG property is defined for two honest slots while the CG property is defined for
any two slots in certain distance. Therefore, it is the more generic version of HCG.

Lemma 6 (CG). Assuming that Fsle satisfies fairness in number of max-elect-reelection,
Θ-unpredictability ,robustness and Sassafras in the no-abort model satisfies ECQ property with
the parameter kecq, Sassafras in the no-abort model satisfies CG property with the parameter
scg = 2secq+shcg and κcg = κcg

shcg
2secq+shcg

where secqκcg ≤ kecq ≤ secq except with the probability

max-elect exp(− shcgphSlotδ
2
hSlot

2) .

Proof. We use the similar proof technique in [2]. Let slots sli, slj be slj ≥ sli + scg. Consider the
sub-chain chain C[sli, sli+ secq] spanned between slots sli and sli+ secq and the sub-chain C[slj −
secq : slj] spanned between slots slj − secq and slj . Thanks to the ECQ property C[sli, sli + secq]
contains at least one block b1 generated in an honest slot because secqκcg ≤ kecq. Similarly,
C[slj − secq : slj] contains at least one block b2 generated on an honest slot. Lastly, we consider
another sub-chain between blocks b1 and b2. Since scg = 2secq + shcg, the difference between
slots of b1 and b2 is at least shcg. Thanks to the HCG property, the length of the the sub-chain
between b1 and b2 is at least equal to shcgphSlot(1 − δhSlot). So, the chain grows in between sli
and slj at least shcgκhcg which implies that κcg = κhcg

shcg
2secq+shcg

and s = 2secq + shcg.

Definition 12 (Secure Blockchain [20]). We call a blockchain protocol is secure if satisfies
the following properties:

– Persistence: A transaction tx is called final if it is more than k blocks deeper in the
blockchain. Persistence guarantees that if an honest party claims that tx is final, then other
honest parties claim the finality of the transaction.

– Liveness: Liveness guarantees that a transaction tx generated by an honest party becomes
final in ∆live-slots.

Theorem 2. Assuming Fsle satisfies fairness in number of max-elect-reelection, Θ-
unpredictability, robustness, phSlot ≥ 1

2 and given that kecq is the ECQ parameter, k > 2kecq
is the CP parameter, shcg = k

κhcg
, secq = kecq/κcg, the epoch length is eplen = 2secq + shcg and

`update ≥ 1, Sassafras in the no-abort model is a secure blockchain protocol with parameters k
and ∆live ≤ secq + eplen.

Proof Sketch: The overall result says that κcg = κhcg
shcg

2secq+shcg
= k

shcg

shcg
2secq+shcg

= k
eplen

. The

best chain at the end of an epoch grows at least k blocks in one epoch thanks to the chain
growth.

Persistence: Thanks to the CP property, any transaction in a block becomes final after
k-blocks later which happens at latest one epoch later.

Liveness: The only case that Fsle aborts is the case when |Leads| − |Labort| < eplen. Since
Elect run by Fsle is robust, Fsle aborts with negligible probability. The second case is when
the honest parties give different stake distribution to Fsle. All honest parties should run Fsle in

23

an epoch e parametrised with a stake distribution DS of e. Therefore, each honest party should
agree on the stake distribution of e before contacting with Fsle. Since `update ≥ 1 epoch, the
honest parties obtain the same stake distribution from epochs less than e − `update just before
contacting Fsle for the election of epoch e thanks to the common prefix property. Therefore, Fsle

never aborts except with negligible probability and all honest parties contacts with the same
functionality Fsle parametrized with the stake distribution of e. This shows that each slot is
assigned to one party during the lifetime of Sassafras. Since phSlot ≥ 1

2 and there will be at least
one honest block in every secq blocks which is finalized at most eplen-slots later. ut

Theorem 3 (Security of Sassafras). Assuming that Sassafras in the no-abort model is se-
cure, then Sassafras is secure.

Proof. We show that if an adversary A breaks the security of Sassafras then we can construct
another adversary B breaking the security of Sassafras in the no-abort model. Reduction is
trivial: Whenever B receives a message from Fsle, it relays it to A and responds Fsle whatever A
responds except with the case where A aborts some slots i.e., sends (aborted slots, sid,Labort).
In this case, B sends (aborted slots, sid, ∅) to Fsle. For each slot that A aborts in the distribution
phase of Fsle, B does not produce block in Sassafras in the no-abort model. For the rest of the
slots, B behaves exactly as A. Clearly, if A breaks the security of Sassafras, then B breaks the
security of Sassafras in the no-abort model. ut

5.2 Instantiation of Sassafras in the Real-World

We show that Sassafras in Fsgke,Fscom and Fsle satisfies liveness and persistence. In this section, we
focus on the real world instantiation of Sassafras, namely analysing briefly the instantiations of
Fsgke,Fscom and Fsle and questioning whether right parameters exist for the security of Sassafras.

Realizing secure diffusion: Given that we have Fcom (without secure diffusion), we can instantiate
the secure diffusion with a Diffie-Hellman (DH) key exchange and semantically secure symmetric
encryption scheme [12]. Each block producer runs DH-key exchange with every block producer
once to obtain a shared secret key. Then, in the distribution phase of Sassafras, each party
encrypts the ticket with the secret key of the repeater and sends the encryption with Fcom.
Whenever a receiver is able to decrypt a ciphertext (i.e., obtain a ticket after the decryption)
with the secret generated together with the sender, the receiver learns the ticket and sees that
it is the repeater of this ticket.

Realizing Fsle: In section 4, we show SASLE realizes Fsle running Algorithm 2. So, we can replace
Fsle with SASLE in Sassafras. In a nutshell, Sassafras with SASLE works as follows: During the
genesis phase, each Pi registers for Fsrvrf and obtains pkrvrf

i to be added in the genesis block as
the signing key. We remind that SASLE needs a secure SMR. Therefore, we use Sassafras as our
SMR used in SASLE. Also, we use SASLE to obtain secure SMR which is Sassafras. This looks
like a chicken and egg problem but the solution is as follows. We assume that the first run of
Fsle, just after the genesis phase, is not instantiated with SASLE. This can be instantiated with
an inefficient or trusted third-party-based secret single-leader election which does not require
SMR. The inefficiency is not a problem at the first run because it is before starting the actual
block production protocol. After the election that realizes Fsle is executed for the first epoch
of Sassafras, the block production of the first epoch is executed as described in the Sassafras.
We remark that now we obtain a secure SMR for the first eplen-slots of Sassafras according

24

to Theorem 3 (obtained from Theorem 2)). Therefore, SASLE can deploy this SMR. So, while
running the first epoch of Sassafras, block producers run SASLE in parallel. Namely, they run
the preparation phase of SASLE to generate the tickets and distribute the tickets to the repeaters
as in the distribution phase. Since the SMR in SASLE is replaced with Sassafras, each repeater
submits the tickets during the submission phase by generating a transaction including the ticket.
Thus, the ticket will be added in a block during the block production of the first epoch since
the first epoch of Sassafras satisfies liveness and persistence. Next, block producers run the
sortition phase of SASLE in order to obtain the leaders of the second epoch. Now, Sassafras is
a secure SMR for the second epoch as well because SASLE realizes Fsle. In a nutshell, once Fsle

is bootstrapped, block producers run SASLE during an epoch e to obtain the leaders of e + 1
by using the Sassafras in e is the SMR. Whenever Pi produces a block after the first epoch, it
also obtains a signature (sign, sid, {pkrvrf

i },Wij , re||j||e, ass) from Fsrvrf (See the verification phase
of SASLE in Section 4 for more details) to show its leadership of the slot sl where the ticket
including Wij , re||j||e is in the order sl. Then, Pi obtains σ̂ij from Fsrvrf. In the end, along with
the block bsl, it also sends σ̂ij . Therefore, ValidateBlock validates σ̂ij with Fsrvrf as well as
the block to verify that the party who produces the block for sl is the leader of sl.

Realizing Fsgke and removing Fsgke: Fsgke in the real world realizable [18] by a forward secure
key evolving signatures (KES) in the standard model [3,23]. A PoS-blockchain protocol needs
a key evolving signature scheme because if a block producer is corrupted at some slot, the
adversary should not able to produce blocks for the past slots. Otherwise, the security of the
protocol can be trivially compromised in the adaptive adversarial model [18]. We realized that
we can prevent an adversary to generate blocks for the past slots by a standard EUF-CMA
signature scheme if Sassafras deploys SASLE. This is important optimization because KES is
not as efficient as a classical signature scheme since it needs extra properties such as creating
a new secret key from the old key and being able to sign with the secret key. Therefore, it
matters especially in PoS-blockchain protocols to avoid using KES to sign a block. In this case,
Sassafras works as follows: At the beginning of the election phase of SASLE, each party Pi
obtains max attempts-many ephemeral signing secret/public key pair (eskj , epkj) from the key
generation of the signature scheme. Then, it lets the associated data be assj = epkj and runs
SASLE as described. Remember that assj is the part of the ring VRF signing progress. So,
each ticket is in the form of (re, j, e,Wij , σij , πij , epkj) now (See Section 4). The next change
in Sassafras is in the block production phase. When the leader of a slot sl generates a block
in the block production, it signs the block with esk which is the ephemeral secret key of the
ephemeral public key that is in the ticket of the slot instead of signing with Fsgke. Then, the
slot leader erases esk. When other block producers verify the block, they verify the signature
of the block by running the verification algorithm of the signature scheme with epk. A verified
σ̂ij shows that epk belongs to the party who produces the ticket of the slot thanks to the given
property of Frvrf. Therefore, they make sure that epk is an ephemeral key of the block producer.
This change gives forward security because each ephemeral key is independently generated and
deleted just after they are used to produce the block. We remark that Sassafras without Fsgke

is still UC-secure because any EUF-CMA secure signature scheme is UC-secure [10]. So, we can
replace the signature scheme with the signature functionality Fsig [10].

5.3 Parameter selection of Sassafras deploying SASLE:

Theorems 1 and 2 show that Sassafras is secure with high probability, provided the parameters
satisfy various assumptions we made along the chain properties. We need to show what com-

25

binations of parameters are possible by instantiating Fsle with SASLE. For this we need to be
specific about the negligible probabilities involved. It is not immediately obvious that consistent
combinations of parameters exist.

Proposition 1. Given ρmax, an upper bound on the highest probability in the distribution DS
and α, an upper bound on the sum of the probabilities in DS for the malicious parties, a fail-
ure probability ε > 0 and an unpredictability θ which must satisfy θ > ρmax

α , we can find
eplen, c, max attempts such that with probability at least 1 − ε, SASLE is robust (Lemma 2)
and θ-unpredictable (Corollary 1) and the chain properties (Section 5.1) hold. Furthermore,
given ρmax ≤ 1

n′ for some n′ and α = Θ(1), we can take θ = 2ρmax

α , ε = exp(−Ω(log n′)),
Ω(log n′) ≤ eplen ≤ O(n′), c = Θ(1) and max attempts = Θ(1).

Proof. We first consider the first part. We need to set the parameter eplen so that the chain
properties hold with probability at least 1 − ε/3. The probability that the chain properties in
an epoch hold given that the election succeeded and SASLE was θ-unpredictable is at least
1 − exp(O(eplen)). So, we can set eplen = Ω(log 1/ε) and have this fail with probability at
most ε/3.

Next, we need the election to succeed except with probability at most ε/3. By Lemma 2, we

need exp(− (r−1)2

2r eplen) ≤ ε/3 where r = cmax attemptsα
ρmaxeplen

has r > 1. Since (r−1)2

2r has derivative
(r−1)r−(r−1)2

2r2 = (r−1)(r+1)
2r2 = 1

2 −
1

2r2 which is positive when r > 1, if we can find an r′ > 1

with exp(− (r′−1)2

2r′ eplen) = ε/3, for r ≥ r′, we have exp(− (r−1)2

2r eplen) ≤ ε/3. Rearranging

the equation for r′ gives r′2 + 1 − 2r′(1 + ln(3/ε)
eplen

) = 0. The only solution of this with r′ > 1 is

r′ = (1 + ln(3/ε)
eplen

) +
√

(1 + ln(3/ε)
eplen

)2 − 1 = 1 + ln(3/ε)
eplen

+
√

(ln(3/ε)
eplen

)2 + 2(ln(3/ε)
eplen

). Later, we will

take max attempts = d r
′ρmaxeplen

cα e which ensures that r > r′, but for this we need c.

Lemma 7. If max attempts = d r
′ρmaxeplen

cα e and

c ≤ χ
αχ

αχ+ρmax exp(−1− ρmax(ln(3r′ρmaxeplen/αε+ 3/ε)− 1)

αχ+ ρmax
)

then SASLE is ρmax

α(1−χ) -unpredictable.

Proof. Putting the inequality for c to the power of αχ+ρmax

αχ , we have

c1+ ρmax
αχ ≤ χ exp(−1− ρmax ln(3r′ρmaxeplen/αε+ 3/ε)

αχ
)

.

c ≤ χ exp(−1−
ρmax ln(3r′ρmaxeplen/αε+ 3/ε)

αχ
)c
− ρmax

αχ

= χ exp(−1−
ρmax(ln(3r′ρmaxeplen/αε+ 3/ε) + ln(1/c))

αχ
)

= χ exp(−1−
ρmax ln(3r′ρmaxeplen/cαε+ 3/cε)

αχ
)

≤ χ exp(−1−
ρmax ln(3r′ρmaxeplen/cαε+ 3/ε)

αχ
)

= χ exp(−1−
ρmax ln((3/ε)(r′ρmaxeplen/cα+ 1))

αχ
)

≤ χ exp(−1−
ρmax ln((3/ε)max attempts)

αχ
)

26

Re-arranging and taking logs give that

ln(χ/c)− 1 ≥ ρmax ln((3/ε)max attempts)

αχ

and so

max attempts exp(−αχ(ln(χ/c)− 1)

ρmax
) ≤ ε/3 .

By Corollary 1, except with probability ε/3, SASLE is ρmax

α(1−χ) -unpredictable.

We need to set χ = 1− ρmax

αθ to obtain θ-unpredictability. With parameters satisfying these,
each property holds except with probability ε/3. By a union bound, all three properties, that
the election does not abort, SASLE is θ-unpredictable and the chain properties, hold except
with probability ε. This gives the first part of the proposition. Note that c and so max attempts

do not depend on ε in an ideal way. max attempts has a term that is (1/ε)ρmax/αχ. This means
that if ρmax/αχ is large then it takes poly(1/ε) VRF attempts by each party in each epoch to
get a small error probability. However in the case of D being the uniform distribution over many
parties, ρmax is small. This is why we consider the case ρmax ≤ 1

n′ for a large n′. In the case
where probabilities are not equal, we would suggest capping ρmax.

Consider choosing χ, eplen, c, max attempts as above for the case ρmax = 1/n′, θ = 2ρmax/α,
α = Θ(1) and ε = exp(−Cn′) for some constant C. Then χ = 1/2 and eplen > Ω(log(Cn′)).
We could take eplen = Θ(log(n′)), however we didn’t give an explicit constant for the lower
bound on eplen and there are practical reasons for making epochs long, because we need to
perform SASLE in every epoch in Sassafras. Thus, we consider a looser upper bound of O(n′).

Next note that r′ = 1+ln(3/ε)/eplen+
√

(ln(3/ε)/eplen)2 + 2(ln(3/ε)/eplen) = O(1) since
ln(3/ε)/eplen = O(1). Now we need to take

c ≤ χ
αχ

αχ+ρmax exp(−1− ρmax(ln(3r′ρmaxeplen/αε+ 3/ε)− 1)

αχ+ ρmax
)

Here αχ = Θ(1) and so αχ + ρmax = Θ(1). The first term, χ
αχ

αχ+ρmax is Θ(1). We have
3r′ρmaxeplen/αε + 3/ε = O(1/ε) = O(exp(Cn′)) and so (ln(3r′ρmaxeplen/αε + 3/ε) − 1) =
O(Cn′). We obtain that c ≤ exp(−O(C)) and so we can take c = ΩC(1). Then max attempts =

d r
′ρmaxeplen

cα e = OC(1). Any choice of C > 0 gives the final part of the proposition. ut

6 Conclusion

We constructed a batched SLE protocol (SASLE) that provides a significant gain compared to
the existing SSLE protocols with respect to the message size. One of the implementations [32] of
the ring VRF in Appendix A) based on KZG polynomial commitments [24] shows that the ring
VRF signature size is 560 bytes. Therefore, the expected communication overhead is 224 KB in
SASLE for 200-elections, 214-parties with equal stakes and the parameters max attempts = 2
and c = 200

214 . In the worst case, where all tickets pass the threshold, which happens with a
negligible probability, the communication overhead is only 0.018 GB. According to [15], the
communication overhead of [15,14,5] is around one gigabyte (GB) for 200 elections with 214

parties with equal stakes. This is huge compared to SASLE’s complexity. On the other hand,
our protocol partially sacrifices secrecy, which is guaranteed only for some leaders.

27

Using SASLE, we constructed a PoS-blockchain protocol Sassafras. Sassafras requires a long
epoch length to realize Frand in the real world [18] i.e., an epoch should be long enough to
guarantee almost surely at least one honest block generated during that epoch. Sassafras utilizing
SASLE with n = 210 parties with equal stakes is secure if eplen = 2000, max attempts = 23,
c = 0.5, α > 1√

2
. In this case, the number of ring VRF signatures which should be stored

on chain in one epoch is 4096 in expectation which is roughly 2293 KB. This shows that the
election mechanism that Sassafras deploys is lightweight in terms of data storage, which makes it
feasible to store the data on chain. On the downside, Sassafras needs stricter honesty assumptions
than the existing PoS-blockchain protocols deploying probabilistic leader election mechanisms
[18,28,6,22,17], but it benefits from the security and efficiency gains that SLE provides [1].

References

1. Sarah Azouvi and Daniele Cappelletti. Private attacks in longest chain proof-of-stake protocols
with single secret leader elections. In AFT, pages 170–182, 2021.

2. Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In ACM
SIGSAC, pages 913–930. ACM, 2018.

3. Mihir Bellare and Sara K Miner. A forward-secure digital signature scheme. In Annual International
Cryptology Conference, pages 431–448. Springer, 1999.

4. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
CRYPTO, pages 757–788. Springer, 2018.

5. Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret leader election.
IACR Cryptol. ePrint Arch., 2020:25, 2020.

6. Jeffrey Burdges, Alfonso Cevallos, Peter Czaban, Rob Habermeier, Syed Hosseini, Fabio Lama,
Handan Kılınç Alper, Ximin Luo, Fatemeh Shirazi, Alistair Stewart, et al. Overview of polkadot
and its design considerations. arXiv:2005.13456, 2020.

7. Jeffrey Burdges, Handan Kılınç Alper, Alistair Stewart, and Sergey Vasilyev. Ethical identity,
ring VRFs, and zero-knowledge continuations. Cryptology ePrint Archive, Paper 2023/002, 2023.
https://eprint.iacr.org/2023/002.

8. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. ePrint
Arch. 2000/067, 2000.

9. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
IEEE CLUSTER Conference, pages 136–145. IEEE, 2001.

10. Ran Canetti. Universally composable signature, certification, and authentication. In Proceedings.
17th IEEE Computer Security Foundations Workshop, 2004., pages 219–233. IEEE, 2004.

11. Ran Canetti, Kyle Hogan, Aanchal Malhotra, and Mayank Varia. A universally composable treat-
ment of network time. In CSF, pages 360–375. IEEE, 2017.

12. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure
channels. In International Conference on the Theory and Applications of Cryptographic Techniques,
pages 337–351. Springer, 2002.

13. Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness attested by public entities. In
ACNS, pages 537–556. Springer, 2017.

14. Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and universally composable single
secret leader election from pairings. ePrint Arch., 2021:344, 2021.

15. Dario Catalano, Dario Fiore, and Emanuele Giunta. Adaptively secure single secret leader election
from DDH. 2022.

16. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science, 777:155–183, 2019.

28

https://eprint.iacr.org/2023/002

17. Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and appli-
cations to provably secure proof of stake. pages 23–41, 2019.

18. Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT, pages 66–98,
2018.

19. Justin Drake, Dankrad Feist, Gottfried Herold, Dmitry Khovratovich, Mary Maller, and Mark
Simkin. Whisk: A practical shuffle-based SSLE protocol for ethereum, 2022. https://hackmd.io/

@asn-d6/HyD3Yjp2Y.
20. Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and

applications. In EUROCRYPT, pages 281–310. Springer, 2015.
21. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge.

Journal of the ACM (JACM), 59(3):1–35, 2012.
22. Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series, con-

sensus system. arXiv preprint arXiv:1805.04548, 2018.
23. Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and verifying. In

Annual International Cryptology Conference, pages 332–354. Springer, 2001.
24. Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials

and their applications. In ASIACRYPT, pages 177–194. Springer, 2010.
25. Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable syn-

chronous computation. In TCC, pages 477–498. Springer, 2013.
26. Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable syn-

chronous computation. In TCC, pages 477–498. Springer, 2013.
27. Aggelos Kiayias, Saad Quader, and Alexander Russell. Consistency of proof-of-stake blockchains

with concurrent honest slot leaders. arXiv:2001.06403, 2020.
28. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably

secure proof-of-stake blockchain protocol. In CRYPTO, pages 357–388, 2017.
29. Handan Kılınç Alper. Network time with a consensus on clock. ePrint Archive, Paper 2019/1348.
30. Rafael Pass and Elaine Shi. The sleepy model of consensus. In Asiacrypt, pages 380–409. Springer,

2017.
31. Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail Khoffi,

Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In IEEE SP,
pages 444–460, 2017.

32. Sergey Vasilyev. Ring-vrf ring proof v2.5. 2022. https://github.com/w3f/ring-proof.

A Ring Verifiable Random Function

Ring VRF functionality is defined as in Figure 4 in [7]. Burdges et al. [7] constructed the
following ring VRF protocol which realizes Frvrf. The public parameters are prime p-order group
G, generators G1, G2 ∈ G. The protocol is built on top of NIZK protocols and random oracles:
H,H′ : {0, 1}∗ → Fp and a hash-to-group function HG : {0, 1}∗ → G. rVRF protocol works as
follows:

– rVRF.KeyGen(1λ) : It outputs skrvrf = x←$Fp and pkrvrf = X = xG1.

– rVRF.Sign(skrvrf ,PK,m, ass) : It lets P = HG(m) and lets W = xP . It generates C =
X + βG2 where β←$Fp. Then, it generates a Schnorr proof πcom showing the follow-
ing relation, i.e., NIZK.Prove(Rcom, ((x, β), (G1, G2,G, C,W,P))) → πcom where Rcom =
{((x, β), (G1, G2,G, C,W,P, ass)) : C = xG1 + βG2,W = xP} Here Prove algorithm runs
a non-interactive Chaum-Pedersen proof with the Fiat-Shamir transform: Sample random
r1, r2 ← Fp. Let R = r1G1 + r2G2, Rm = r1P , and c = H′(PK,m,W,C,R,Rm, ass). Set

29

https://hackmd.io/@asn-d6/HyD3Yjp2Y
https://hackmd.io/@asn-d6/HyD3Yjp2Y
https://github.com/w3f/ring-proof

πcom = (c, s1, s2) where s1 = r1 + cx and s2 = r2 + cβ It generates the second proof πpk
for the following relation Rpk = {(X,β), (G1, G2,G,PK, C)) : C − βG2 = X ∈ PK} with
the witness (PK, X, β) by running NIZK.Prove(Rpk, ((X,β), (G1, G2,G,PK, C))) In the end,
rVRF.Sign outputs σ,W where σ = (πcom, πpk, C).

– rVRF.Verify(PK,W,m, ass, σ): Given σ = (πcom, πpk, C) and PK,W ,
it runs NIZK.Verify(Rcom, (G1, G2,G, C,W,P, ass), πcom) and runs
NIZK.Verify(Rpk, (G1, G2,G,PK, C), πpk). If all verify, it outputs 1 and the evaluation value
y = H(m,W). Otherwise, it outputs (0,⊥).

B Secret Ring VRF

Another version of Frvrf called Fsrvrf operates as Frvrf. In addition, it also lets a party generate

a secret element to check whether it satisfies a certain relation i.e., ((m, y,PK), (η, pkrvrf
i)) ∈ R

where η is the secret random element. If it satisfies the relation, then Fsrvrf generates a proof.
Proving works as Fzk [21] except that a part of the witness (η) is generated randomly by the
functionality. Fsrvrf is useful in applications where a party wants to show that the random output
y satisfies a certain relation without revealing his identity.

C A version of Chernoff bound

We will use the following Chernoff bound.

Lemma 8. If X =
∑
i wiXi is a weighted sum of independent (but not necessarily identical)

Bernoulli random variables Xi with 0 ≤ wi ≤ wmax then, for any s ≥ E[X]:

Pr[X ≥ s] ≤ exp((−E[X]− s(ln(s/E[X])− 1))/wmax)

Proof. Letting pi = E[Xi] and µ = E[X] =
∑
i piwi,, by Markov’s inequality, for t =

ln(s/µ)/wmax,

Pr[X ≥ s] = Pr[eXt ≥ eSt]
≤ E[eXt]/est

= exp(−st)
n∏
i=1

(1− pi + piexp(wit))

= exp(−st+
∑
i

ln(1 + pi(exp(wit)− 1)))

≤ exp(−st+
∑
i

ln(exp(piexp(wit)− 1)))

= exp(−st+
∑
i

pi(exp(wit)− 1))

≤ exp(−st+
∑
i

piwi(exp(wmaxt)− 1)/wmax)

= exp(−s(ln(s/µ)/wmax) +
∑
i

piwi(s/µ− 1)/wmax)

= exp((−s ln(s/µ)− µ+ s)/wmax)

where the second inequality used that 1 + x ≤ exp(x) and the third used the convexity of exp.

30

Frvrf runs two PPT algorithms GenW and Gensign during the execution.

Key Generation. upon receiving a message (keygen, sid) from a party Pi, send (keygen, sid,Pi) to the sim-

ulator Sim. Upon receiving a message (verificationkey, sid, pkrvrf) from Sim, verify that pkrvrf has not been

recorded before for sid; then, store in the table verification keys, under Pi, the value pkrvrf . Return

(verificationkey, sid, pkrvrf) to Pi.

Malicious Key Generation. upon receiving a message (keygen, sid, pkrvrf) from Sim, verify that pkrvrf was not

yet recorded, and if so record in the table verification keys the value pkrvrf under Sim. Else, ignore the
message.

Corruption: upon receiving (corrupt, sid,Pi) from Sim, remove pkrvrf
i from verification keys[Pi] and store pkrvrf

i
to verification keys under Sim. Return (corrupted, sid,Pi).

Malicious Ring VRF Evaluation. upon receiving a message (eval, sid, pkrvrf
i ,W,m) from Sim, if pkrvrf

i is
recorded under an honest party’s identity or if there exists W ′ 6= W where anonymous key map[m,W ′] =

pkrvrf
i , ignore the request. Otherwise, record in the table verification keys the value pkrvrf

i un-

der Sim if pkrvrf
i is not in verification keys. If anonymous key map[m,W] is not defined before, set

anonymous key map[m,W] = pkrvrf
i and let y ←$ {0, 1}`rVRF and set Out[m,W] = y. Then, set Out[m,W] = y,

anonymous key map[m,W] = pkrvrf
i obtain y = Out[m,W]. Otherwise, obtain y = Out[m,W ′]. Return

(evaluated, sid,m, pkrvrf
i ,W, y) to Pi.

Honest Ring VRF Signature and Evaluation. upon receiving a message (sign, sid,PK, pkrvrf
i ,m) from Pi,

verify that pkrvrf
i ∈ PK and that there exists a public key pkrvrf

i associated to Pi in the table
verification keys. If that wasn’t the case, just ignore the request. If there exists no W ′ such that

anonymous key map[m,W ′] = pkrvrf
i , let W ←$ {0, 1}w(λ) and let y ←$ {0, 1}`rVRF . If there exists W where

anonymous key map[m,W] is defined, then abort. Otherwise, set anonymous key map[m,W] = pkrvrf
i and

set Out[m,W] = y. Obtain W, y where anonymous key map[m,W] = pkrvrf
i and Out[m,W] = y and run

Gensign(PK,W) → σ. Verify that [m,W,PK, σ, 0] is not recorded. If it is recorded, abort. Otherwise,
record [m,W,PK, σ, 1]. Return (signature, sid,PK,W,m, y, σ) to Pi.

Malicious Requests of Signatures. upon receiving a message (signature request, sid,PK,W,m) from Sim,
obtain all existing valid signatures σ such that [m,W,PK, σ, 1] is recorded and add them in a list Lσ.
Return (signatures, sid,PK,W,m,Lσ) to Sim.

Ring VRF Verification. upon receiving a message (verify, sid,PK,W,m, σ) from a party, do the following:
Cond.- 1 If there exits a record [m,W,PK, σ, b′], set b = b′. (This condition guarantees the completeness and

consistency.)
Cond.- 2 Else if anonymous key map[m,W] is an honest verification key and there exists a record [m,W,PK, σ′, 1]

for any σ′, then let b = 1 and record [m,W,PK, σ, 1]. (This condition guarantees that if m is signed
by an honest party for the ring PK at some point, then the signature is σ′ 6= σ which is generated by
the adversary is valid) Output (verified, sid,PK,W,m, σ,Out, b) to the party where Out = Out[m,W]
if b = 1. Otherwise, Out =⊥.

Cond.- 3 Else relay the message (verify, sid,PK,W,m, σ) to Sim and receive back the message

(verified, sid,PK,W,m, σ, bSim, pkrvrf
Sim). Then check the following:

(a) If W /∈ W and |W[m,PK]| > |PKmal| where PKmal is a set of malicious keys in PK, set b = 0.
(This condition guarantees uniqueness meaning that the number of verifying outputs that Sim
can generate for m,PK is at most the number of malicious keys in PK.).

(b) Else if pkrvrf
Sim is an honest verification key, set b = 0. (This condition guarantees unforgeability

meaning that if an honest party never signs a message m for a ring PK)

(c) Else if there exists W ′ 6= W where anonymous key map[m,W ′] = pkrvrf
Sim, set b = 0.

(d) Else set b = bSim.
In the end, record [m,W,PK, σ, b] if it is not stored. If b = 0, let Out =⊥. Otherwise, do the following:

– if W /∈ W[m,PK], add W to W[m,PK].

– if pkrvrf
Sim is not recorded, record it in verification keys under Sim.

– if Out[m,W] is not defined, set Out[m,W]←$ {0, 1}`rVRF , anonymous key map[m,W] = pkrvrf
Sim. Set

Out = Out[m,W].
– otherwise, set Out = Out[m,W].

Finally, output (verified, sid,PK,W,m, σ,Out, b) to the party and Sim.

Fig. 4. Functionality Frvrf.

31

Fsrvrf for a relation R behaves exactly as Frvrf. Differently, it has an algorithm Genπ and it additionally does the
following:

Secret Element Generation of Malicious Parties. upon receiving a message
(secret rand, sid,PK, pkrvrf ,W,m) from Sim, verify that anonymous key map[W] = (m,PK, pkrvrf

i). If that was
not the case, just ignore the request. If secrets[m,W,PK] is not defined, obtain y = Out[m,W,PK].

Then, run Genη(m,PK, pkrvrf
i , y) → η and store secrets[m,W,PK] = η. Obtain η = secrets[m,W,PK]

and return (secret rand, sid,PK,W, η) to Pi.

Secret Random Element Proof. upon receiving a message (secret rand, sid,PK, pkrvrf ,W,m) from Pi, ver-

ify that anonymous key map[W] = (m,PK, pkrvrf
i). If that was not the case, just ignore the request. If

secrets[m,W,PK] is not defined, run Genη(m,PK, pkrvrf
i , y) → η and store secrets[W,m] = η. Obtain

η ← secrets[m,W,PK] and y ← Out[m,W,PK]. If ((m, y,PK), (η, pkvrf
i)) ∈ R, run Genπ(PK,W,m)→ π

and add π to a list zkproofs[m,W,PK]. Else, let π be ⊥. Return (secret rand, sid,PK,W, η, π) to Pi.
Secret Verification. upon receiving a message (secret verify, sid,PK,W,m, π), relay the message to Sim and

receive (secret verify, sid,PK,W,m, π, pkrvrf , η). Then,

– if π ∈ zkproofs[m,W,PK], set b = 1.

– else if secrets[W,m] = η and ((m, y,PK), (η, pkvrf
i)) ∈ R, set b = 1 and add to the list

zkproofs[m,W,PK].
– else set b = 0.

Send (verification, sid,PK,W,m, π, b) to Pi.

Fig. 5. Functionality Fs
rvrf.

32

	Sassafras and Semi-Anonymous Single Leader Election

