Published September 14, 2022 | Version v4
Poster Open

Species differences: The dark matter of longevity genetics

  • 1. Carleton University

Description

Mainstream genetics of ageing and longevity studies modest longevity interventions known from short-lived model organisms, such as caloric restriction or rapamycin in nematodes or mice; and the evolutionarily conserved, nutrient-sensing metabolic fine-tuning pathways involved, such as insulin-like signaling (ILS) and target of rapamycin (TOR). Yet these effects are dwarfed by what evolution can do: a calorically restricted mouse lives 4–5 years; but a naked mole-rat lives decades, while a bowhead whale or an ocean quahog live centuries.

The study of species differences in ageing and longevity is an emerging field. It requires non-classical genetic methods, including comparative genomics to generate hypotheses and gene-editing or cell culture experiments to test them. So far it has yielded some answers, and more questions: for instance, we know ocean quahog proteins resist misfolding, but we don’t know how; and we know that elephants have extra pseudogene copies of the tumour-suppressor TP53, but whales don’t. It has suggested some roles for old friends, such as the ILS pathway in microbats; as well as for new friends, such as FAM126B, a barely-studied protein related to hyccin, in mammals; and OBSCN, a giant gene with many isoforms due to alternative RNA splicing, in Pacific rockfish.

Poster references

Austad, SN. (2022). Methuselah's Zoo: What Nature Can Teach Us About Living Longer, Healthier Lives. MIT Press.

Bahry, D. (2022a). Book review: Methuselah's Zoo by Steven N. Austad. BioEssays [early view]: 2200144. https://doi.org/10.1002/bies.202200144

Bahry, D. (2022b). Two genes of interest from comparative longevity genomics: FAM126B and OBSCN [preprint]. Zenodo, Sep 14. https://doi.org/10.5281/zenodo.7080278 

Finch, CE. (1990). Longevity, Senescence, and the Genome. The University of Chicago Press.

Kolora, SRR. et al. (2021). Origins and evolution of extreme life span in Pacific Ocean rockfishes. Science 374: 842–847. https://doi.org/10.1126/science.abg5332

Lees, JA. et al. (2017). Architecture of the human PI4KIIIα lipid kinase complex. Proc. Natl. Acad. Sci. U. S. A. 114: 13720–13725. https://doi.org/10.1073/pnas.1718471115

Li, Y. & de Magalhães, JP. (2013). Accelerated protein evolution analysis reveals genes and pathways associated with the evolution of mammalian longevity. Age (Dordr.) 35: 301–314. https://doi.org/10.1007/s11357-011-9361-y

Seluanov, A. et al. (2018). Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 18: 433–441. https://doi.org/10.1038/s41568-018-0004-9

Steele, A. (2020). Ageless: The New Science of Getting Older Without Getting Old. Bloomsbury.

Poster permissions:

(Seluanov et al., 2018, Fig. 5): permission not sought to reproduce online.

(Lees et al., 2017, Fig. 4A): "Permission is not required to use original figures or tables for noncommercial and educational use (i.e., in a review article, in a book that is not for sale) if the article published under the exclusive PNAS License to Publish. ..." [source].

Files

Bahry (2022 online) - Species differences - The dark matter of longevity genetics.pdf

Additional details

Related works

Cites
Preprint: 10.5281/zenodo.7080278 (DOI)
Journal article: 10.1038/s41568-018-0004-9 (DOI)

References

  • Steele, A. (2020). Ageless: The New Science of Getting Older Without Getting Old. Bloomsbury.
  • Seluanov, A. et al. (2018). Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 18: 433–441. https://doi.org/10.1038/s41568-018-0004-9
  • Li, Y. & de Magalhães, JP. (2013). Accelerated protein evolution analysis reveals genes and pathways associated with the evolution of mammalian longevity. Age (Dordr.) 35: 301–314. https://doi.org/10.1007/s11357-011-9361-y
  • Lees, JA. et al. (2017). Architecture of the human PI4KIIIα lipid kinase complex. Proc. Natl. Acad. Sci. U. S. A. 114: 13720–13725. https://doi.org/10.1073/pnas.1718471115
  • Kolora, SRR. et al. (2021). Origins and evolution of extreme life span in Pacific Ocean rockfishes. Science 374: 842–847. https://doi.org/10.1126/science.abg5332
  • Finch, CE. (1990). Longevity, Senescence, and the Genome. The University of Chicago Press.
  • Bahry, D. (2022b). Two genes of interest from comparative longevity genomics: FAM126B and OBSCN [preprint]. Zenodo, Sep 14. https://doi.org/10.5281/zenodo.7080278
  • Bahry, D. (2022a). Book review: Methuselah's Zoo by Steven N. Austad. BioEssays [early view]: 2200144. https://doi.org/10.1002/bies.202200144
  • Austad, SN. (2022). Methuselah's Zoo: What Nature Can Teach Us About Living Longer, Healthier Lives. MIT Press.